

# HYDROGEOLOGICAL ASSESSMENT HORTA-CRAFT GREENHOUSE EXPANSION 4836 EGREMONT DRIVE STRATHROY, ONTARIO

| Prepared For: | Horta-Craft Ltd.    |
|---------------|---------------------|
|               | 4836 Egremont Drive |
|               | Strathroy, Ontario  |
|               | N7G 3H3             |
|               |                     |

Attention : Mr. Paul Lofgren

File No. 1-21-0692-54 March 28, 2022

## © Terraprobe Inc.

 Greater Toronto
 Hamilton – Niagara

 11 Indell Lane
 903 Barton Street, Unit 22

 Brampton, Ontario L6T 3Y3
 Stoney Creek, Ontario

 (905) 796-2650 Fax: 796-2250
 (905) 643-7560 Fax: 643-7

#### Terraprobe Inc.

Hamilton – NiagaraCentral Ontario903 Barton Street, Unit 22220 Bayview Drive, Unit 25Stoney Creek, Ontario L8EBarrie, Ontario L4N 4Y8(905) 643-7560 Fax: 643-7559(705) 739-8355 Fax: 739-8369www.terraprobe.ca

#### Northern Ontario

1012 Kelly Lake Rd., Unit 1 **Sudbury**, Ontario P3E 5P4 (705) 670-0460 Fax: 670-0558

#### **TABLE OF CONTENTS**

| SECTION   |                                                                  | PAGE (S) |
|-----------|------------------------------------------------------------------|----------|
| 1.0       | INTRODUCTION                                                     | 1        |
| 2.0       | SCOPE OF WORK                                                    | 2        |
| 3.0       | APPLICABLE REGULATIONS AND POLICIES                              | 3        |
| 3.1       | ST. CLAIR CONSERVATION POLICIES AND REGULATIONS (O. REG. 179/06) |          |
| 3.2       | CLEAN WATER ACT 2006                                             | -        |
| 3.3       | MIDDLESEX CENTRE OFFICIAL PLAN 2020                              | 3        |
| 4.0       | DESCRIPTION OF SITE CONDITIONS                                   | 4        |
| 4.1       | SITE LOCATION AND DESCRIPTION                                    | 4        |
| 4.2       | SITE TOPOGRAPHY AND DRAINAGE                                     | 4        |
| 4.3       | REGIONAL GEOLOGY AND PHYSIOGRAPHY                                | 4        |
| 4.4       | LOCAL GROUNDWATER RESOURCES                                      | 4        |
| 4.5       | RESULTS OF DOOR-TO-DOOR SURVEY                                   | 5        |
| 5.0       | RESULTS OF WELL TESTING                                          | 6        |
| 5.1       | WELL YIELD TESTING                                               | 6        |
| 5.2       | SUSTAINABLE YIELD ANALYSIS                                       | 6        |
| 5.3       | AQUIFER ANALYSIS                                                 |          |
| 5.4       | WATER QUALITY ANALYSIS                                           |          |
| 6.0       | IMPACT ASSESSMENT                                                | 9        |
| 6.1       | RADIUS OF INFLUENCE                                              | 9        |
| 6.2       | WATER SERVICING IMPACT ASSESSMENT                                | 9        |
| 6.3       | SEWAGE DISPOSAL IMPACT ASSESSMENT                                | 10       |
| 7.0       | SUMMARY AND CONCLUSIONS                                          | 11       |
| LIMITATIO | DNS                                                              | 14       |



#### FIGURES:

Figure 1 – Site Location Plan Figure 2 –Well Location Plan

#### TABLES:

Table 1 - Summary of Groundwater Quality Analysis

#### **APPENDICES:**

- Appendix A Regulatory Mapping
- Appendix B MECP Well Records
- Appendix C Results of Pumping Test
- Appendix D Laboratory Certificates of Analysis



## 1.0 INTRODUCTION

Terraprobe Inc. (Terraprobe) has been retained by Horta-Craft Ltd. to complete a hydrogeological investigation in support of future greenhouse expansion for the greenhouse facility located at the municipal address of 4836 Egremont Drive in Strathroy, Ontario, here in referred to as the 'Property' or the 'Site'.

The purpose of this study was to characterize the local and regional geological and hydrogeological conditions through a review of background information, determine development constraints for the Property based on a review of regulatory mapping and planning documents and to complete well testing to determine the quantity and quality of groundwater available to support future greenhouse expansion. The data obtained from this investigation was used to provide assessments of sustainable well yield and the predicted zone of influence of water taking from the existing groundwater supply well for the Property. An impact assessment for increased water taking and subsurface sewage disposal for the Property was completed for surrounding private water supply wells and natural features.



#### 2.0 SCOPE OF WORK

The scope of work for the study consisted of the following:

- <u>A Review of Background Information</u> Available background information for the site and the project was reviewed. This included information from public sources, including geologic and topographic mapping, aerial photography and Ministry of Environment, Conservation and Parks (MECP) well records.
- <u>Completion of a Private Well Survey</u> A private well survey was completed for properties within a 500 m radius of the subject site (study area). The well survey will be completed to determine the location, construction details and operational history of private water supply wells within the study area.
- <u>Completion of a Pumping Test</u> Testing was completed from the ground water supply well servicing the greenhouse operations at the estimated daily maximum water demand scenario for the proposed and existing greenhouse facility. The testing will investigate the potential for impact to existing private water supply wells completed in the vicinity of the subject property.
- <u>Water Quality Sampling</u> Water quality analysis was completed from the water supply well for the greenhouse for E. coli, total coliforms, general inorganic chemistry, and metals. Water quality sampling will be completed following several hours of pumping and upon completion of testing to evaluate potential changes to water quality with pumping.

<u>Hydrogeology Report</u> - Following completion of the above-noted study, a detailed engineering report was prepared regarding the site hydrogeology. The report provides the factual information gathered during the study, including the background information and results of well testing. An impact assessment for increased water taking from the existing on-site water supply well and for subsurface sewage disposal required for the proposed greenhouse expansion will be provided.



#### 3.0 APPLICABLE REGULATIONS AND POLICIES

#### 3.1 St. Clair Conservation Policies and Regulations (O. Reg. 179/06)

Under Section 28 of the Conservation Authorities Act, local conservation authorities are mandated to protect the health and integrity of the regional greenspace system and to maintain or improve the hydrological and ecological functions performed by valley and stream corridors. St. Clair Conservation, through its regulatory mandate, is responsible for issuing permits under Ontario Regulation (O.Reg. 179/06), *Development, Interference with Wetlands and Alterations to Shorelines and Watercourses* for development proposal or Site alteration work to shorelines and watercourses within the regulated areas.

St. Clair Conservation Regulated Area online mapping was reviewed and the Site is not located within a Regulated Area. As such, development permits from St. Clair Conservation under Ont. Reg. 179/06 will not be required for alterations on the Property. Refer to **Appendix A** for associated mapping details.

#### 3.2 Clean Water Act 2006

The MECP mandates the protection of existing and future sources of drinking water under the Clean Water Act, 2006 (CWA). Initiatives under the CWA include the delineation of Wellhead Protection Areas (WHPAs), Significant Groundwater Recharge Areas (SGRAs) and Highly Vulnerable Aquifers (HVAs), as well as the assessment of drinking water quality and quantity threats within Source Protection Regions. Source Protection Plans are developed under the CWA and include the restriction and prohibition of certain types of activities and land uses within WHPAs. This plan dictates that any site within the Thames-Sydenham Region can be rated in terms of score indicating vulnerability to drinking water quality and quantity threats. It is noted that communities within the St. Clair Conservation are typically provided with surface water based municipal water supplies from Lake Huron or the St. Clair River. Municipal well fields within the St. Clair Conservation boundaries were not reported, as such, the Site does not fall within areas regulated as WHPAs, SGRAs or HVAs.

#### 3.3 Middlesex Centre Official Plan 2020

The Property is situated within the planning jurisdiction of Middlesex Centre, the official plan was reviewed for potential development constraints related to planning requirements as provided under the Official Plan. The following development schedules were applicable to the Site:

- Schedule A(Settlement Areas/Land Use Plan) The Site is not located within a special policy area, floodplain or special resource area.
- Schedule B (Greenlands System) The Site is not located within an area of natural or scientific interest (ANSI) or a significant woodlot



## 4.0 DESCRIPTION OF SITE CONDITIONS

#### 4.1 Site Location and Description

The Property is located approximately 700 m east of the intersection of Egremont Drive and Hickory Drive in the Town of Strathroy. The general location of the Site is shown on **Figure 1**.

The Property currently consists of a a greenhouse facility operated as Horta-Craft Ltd. It is proposed to expand the greenhouse operations following a phased approach in the future. Current expansion plans are not presently finalized. The purpose of this investigation was to assess the current servicing capabilities for the site such that additional servicing requirements could be assessed once expansion plans for the facility were determined. The facility is privately serviced with a private water supply well and subsurface sewage disposal system.

#### 4.2 Site Topography and Drainage

Based on topographic mapping Site elevation varies from approximately  $251 \pm \text{masl}$  to  $249 \pm \text{masl}$  (meters above sea level) towards west/southwest. Local drainage is directed along road side drainage swales to the Ed-Wood Drain situated approximately 300 m west of the Site, draining south to the East Sydenham River situated approximately 1.4 km southeast of the Site. Regional and local groundwater flow direction is expected to flow south/southwest towards the East Sydenham River.

#### 4.3 Regional Geology and Physiography

Based on published geological information for the area, the Site is located within the physiographic region known as the Norfolk Sand Plain, an area stretching from the southern shores of Lake Huron to Toronto, including much of the Lake Erie shoreline. Based on the Ontario Geological Survey (OGS) mapping, the surficial geology at the Site consists of glaciolacustrine deep water deposits of silt and clay overlying glaciolacustrine shallow water deposits of sand. The depth of sand was reported as variable between 12 to 16 m in depth.

Bedrock, based on a review of geologic mapping, is shown to consist of limestone/dolostone of the Hamilton Group. Based on the review of the Elgin Middlesex Groundwater Study (2004) bedrock lies at an elevation of approximately 160 masl (depth of approximately 90 m below ground surface). Wells in the vicinity of the site do not encounter bedrock deposits.

#### 4.4 Local Groundwater Resources

MECP Water Well Records (WWRs) were reviewed for the registered wells located at the Site and within a 500 m radius of the site boundaries (study area). Information contained in these records provides data



for determining the nature and use of local groundwater resources. A total of 15 well records were located within the study area, with the details for each well summarized in **Appendix B**. the locations of private wells are provided on the attached **Figure 2**. A summary of data obtained from these MECP records is presented in Table below:

| Total Number of Wells | 15        |  |
|-----------------------|-----------|--|
| Screened Formation    |           |  |
| Overburden            | 15 (100%) |  |
| Bedrock               | 0 (0%)    |  |
| Depth Ranges          |           |  |
| Less than 20 m        | 6 (40%)   |  |
| 20 m to 23 m          | 9 (60%)   |  |
| Greater than 23 m.    | 0 (0%)    |  |
| Water Use             |           |  |
| Domestic/Stock        | 10 (67%)  |  |
| Industrial            | 1 (7%)    |  |
| Commercial            | 2 (13%)   |  |
| Not Used/ Abandoned   | 2 (13%)   |  |
| Pumping Rate          |           |  |
| Less than 20 Lpm      | 2 (13%)   |  |
| 20 Lpm to 40 Lpm      | 8 (53%)   |  |
| Greater than 40 Lpm   | 3 (20%)   |  |
| Dry Well              | 2 (13%)   |  |

Based on the review of the well records surrounding private water supply wells are completed within overburden deposits at depths less than 23 m below grade. Well use is primarily for domestic purposes with private commercial, industrial and agricultural uses also present within the study area. Pumping rates are reported between 15.1 L/min to 56.8 L/min (4 to 15 US gallons per minute). Water quality is described as fresh water. The water supply well record for the Site is provided in **Appendix B**.

## 4.5 Results of Door-to-Door Survey

A private well survey was completed for properties located within a 500 m radius of the Site (study area). The private well survey included properties along Egremont Drive between Hickory Drive and Headly Road. Due to the current COVID-19 restrictions that have been imposed by the provincial government and to ensure health and safety, the survey involved limited interaction with the private property owners. Properties within the study area were visited on December 7, 2021 to confirm locations and construction details of private wells. Seven properties were reviewed with municipal address of 4755 (4101087), 4765 (4109202). 4766 (4109949), 4808 (4106427), 4811 (4101090), 4836 (4114251) and 4896 (4104703) Egremont Drive. These properties were confirmed to have private servicing with well record numbers matching records provided in **Appendix B** confirmed as part of the private well survey. Property locations are indicated on the attached **Figure 2**.



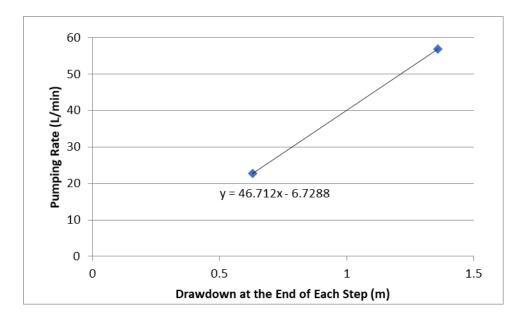
#### 5.0 RESULTS OF WELL TESTING

#### 5.1 Well Yield Testing

Well yield testing was completed on December 7, 2021 with the assistance of a licenced well technician to disconnect the existing distribution system and operate the existing pumping equipment. Discharge was directed to the road side swale along Egremont Drive approximately 15 m southeast from the test well, and was not observed to collect on-site. Discharge drained away from the site and was observed to infiltrate, discharge is not expected to have influenced the results of testing.

The static water level observed prior to the start of testing was 15.6 m below grade. Step testing was completed to determine the expected sustainable yield of the well. The step testing consisted of pumping the on-site well at two rates. Each rate was held constant until a stable water level was reached. Intervals were set at 22.7 L/min (6 USG/min) and 56.8 L/min (15 USG/min). The following summarizes the results of step testing for the existing well:

#### Summary of Step Pumping


|                      | First Step Rate | Second Step Rate |
|----------------------|-----------------|------------------|
| Pumping Rate         | 22.7 L/min      | 56.8 L/min       |
| Duration of step     | 15 Minutes      | 195 Minutes      |
| Volume Pumped        | 340 L           | 11,076 L         |
| Static pumping level | 16.22 mbgl      | 16.95 mbgl       |
| Observed drawdown    | 0.63 m          | 1.36 m           |

Static pumping levels within the well were generally reached within 3 minutes of pumping. Recovery of water levels was observed following completion of the pumping test and 99% recovery of the well was observed within 3 minutes following completion of testing. The results of the pumping test are provided in the attached **Appendix C**.

#### 5.2 Sustainable Yield Analysis

The sustainable capacity of the well was calculated by the linear relationship of the observed drawdown at the end of each completed step and the pumping rate as shown in the graph below:





The slope of the line of best fit represents the specific capacity for the on-site well was approximately 46.712 L/min, The maximum allowable capacity of the well was estimated accoring to the equaition:

#### Q<sub>max</sub> = SC x s<sub>wmax</sub> x FS

Where: Q<sub>max</sub> is the estimated maximum pumping rate;

SC is the specific capacity of the well;

 $S_{wmax}$  is the maximum allowable drawdown in the well; and,

FS is a factor of safety.

The maximum allowable drawdown from the on-site well is estimated from the static water level of 15.6 mbgl and the pump setting approximately 1.5 m from the base of the well (22.6 m) and a 1.5 m submergence above the pump for an available drawdown of 4.0 m. The resulting sustainable flow rate accounting for a factor of safety of 0.25 would be 140.1 L/min (37 USG/min).

The estimated maximum yield was not confirmed with pumping. The existing pump was not of sufficient capacity to pump at rates exceeding 56.8 L/min. It should be noted that any pumping tests exceeding pumping at the rate of 50,000 L/day would require a temporary Permit to Take Water (PTTW) issued by the MECP. In the event that water taking for the proposed agricultural uses at the site exceeds 50,000 L/day (i.e. 35 L/min or 9 USG/min over 24 hours) a PTTW will be required. In support of this PTTW application, additional well testing would be required to investigate potential for impacts to surrounding private water supply wells and natural features at the anticipated maximum rate of water taking for the proposed facility. This testing was beyond the scope of current reporting. The on-site well is expected to be capable of meeting demand less than 50,000 L/day without additional permitting.



#### 5.3 Aquifer Analysis

An aquifer analysis was completed on the results of pumping test for the portion of testing completed at the rate of 56.8 L/min (15 USG/min). Analysis was completed following a Cooper-Jacob analysis for a confined to semi-confined aquifer. Based on the completed analysis the hydraulic conductivity of the underlying medium sand aquifer was calculated at a rate of 9.5 x  $10^{-5}$  m/s with a transmissivity of 3.6 x  $10^{-4}$  m<sup>2</sup>/s. Storativity was calculated using Aqtesolv software based on representative values for a medium sand aquifer, resulting in an estimated storativity of 7.8 x  $10^{-4}$ . Pumping test analysis results are provided in **Appendix C**.

#### 5.4 Water Quality Analysis

The on-site well was sampled on December 7, 2021 during and immediately prior to completion of well testing. The well was sampled for general inorganic parameters, metals and microbiology from the discharge pipe leading from the test well. Samples were collected in laboratory supplied bottles appropriate for the completed analysis. All collected samples were stored in coolers on ice for transportation to ALS Laboratories in Mississauga for analysis. ALS Laboratories is a CALA accredited third party laboratory. Certificates of analysis are provided in the attached **Appendix D**. A summary of groundwater quality results are provided in the attached **Table 1**.

Results of groundwater quality analysis were compared to the Ontario Drinking Water Standards (O.Reg. 169/03). Groundwater quality was observed to remain consistent between sampling events, degradation of water quality with pumping is not expected. Upon completion of testing quality exceedances were noted for aesthetic water quality objectives for hardness, colour, turbidity and iron. Operation guidelines and health based quality guidelines of O.Reg. 169/03 were not observed. Low levels of total coliform bacteria (1 CFU/100 mL) were detected in the initial groundwater sample. Non-dteectable levels of total oliform were detected in the final collected groundwater sample. The positive total coliform sample was considered likely due to contamination resulting in removal of the existing pump and installation of a test pump for the purporse of testing. Bacterological contamination of groundwater is not expected based on the depth of the well and overlying soils (i.e., low permeability soils).

The tested groundwater is considered potable. The noted aesthetic exceedances are considered reasonably treatable with water softeners (hardness) and reverse osmosis systems (colour, turbidity, iron) sould treatment be required.



#### 6.0 IMPACT ASSESSMENT

The impact assessment details that are applicable to the Property are discussed below:

#### 6.1 Radius of Influence

The radius of influence of water taking was calculated given the rate of hydraulic conductivity determined for the underlying sand aquifer and the expected maximum drawdown within the water supply well for the pumping rate of 140 L/min (37 USG/min) determined as the sustainable yield from the on-site well. The radius of influence of water taking was assessed based on Sichardt's equation as follows:

#### R = 3000d√K

Where: R is the radius of influence (m)

d is the maximum drawdown (4.0 m)

K is the hydraulic conductivity of the water bearing soils  $(9.5 \times 10^{-5} \text{ m/s})$ 

The resulting radius of influence was calculated at 117 m from the on-site pumping well.

#### 6.2 Water Servicing Impact Assessment

The potential impacts on groundwater as a result of water taking for the subject site and future greenhouse expansions was assessed based on the results of the pumping test and groundwater quality analysis. The expected radius of influence for the expected sustainable yield was estimated at a distance of 117 m from the pumping well. Based on the completed well record review and private well survey wells completed to the south and west of the site at municipal addresses of 4811 and 4808 Egremont Drive are located in closest proximity to the pumping well. The following table provides a summary of these wells:

| Municipal Address   | Well ID | Well Depth<br>(m) | Static Water<br>Level (m) | Distance from<br>Pumping Well (m) |
|---------------------|---------|-------------------|---------------------------|-----------------------------------|
| 4811 Egremont Drive | 4101092 | 22.6              | 12.8                      | 130 m West                        |
| 4808 Egremont Drive | 4106427 | 24.4              | 14.0                      | 130 m South                       |

Based on the above estimated distances, it is expected that surrounding private wells will be situated outside of the expected radius of influence of pumping. As noted above in Section 5.2, in the event that expanded greenhouse operations require servicing in excess of 50,000 L/day, further testing and well monitoring will be required as part of the Permit application to verify the potential for impact to surrounding private water supply wells. The well is expected to be capable of meeting demand less than 50,000 L/day without any water servicing impact and additional permitting.



The closest surface water feature consists of the Ed-Wood Drain, situated approximately 250 m east of the site. Surface water features fall outside of the calculated radius of influence of 117 m. Impacts to surface water features are not expected as a result of increased water taking at the site.

Groundwater quality observed over the duration of the pumping test indicated non-dectable levels of nitrate, an indicator of impacts of surficial land use including subsurface sewage disposal and agricultural fertilizer application. It is expected that the surficial clay layer expected between 12 to 17 m in thickness provides geological isolation from sources of potential contamination. Groundwater quality was not observed to degrade with pumping. Potential sources of groundwater contamination within the calculated radius of influence are not expected.

#### 6.3 Sewage Disposal Impact Assessment

The site is currently serviced with a Class IV subsurface sewage disposal system. Plans of the installed system were not available at the time of reporting, and a system inspection completed by a licsenced septic installer was not completed to confirm the size and capacity of the existing septic system.

It is anticipated that the sewage disposal system can be reviewed based on expansion plans once available. Based on Chapter 8 of the Ontario Building Code (OBC) for non-residential uses (Table 8.2.1.3.B) sewage flows would be based on the per employee sewage flow (75 L/day/person) or the number of water closets (950 L/day), whichever is greater. Given the daily sewage flow requirement it would be feasible to expand greenhouse capacity without expanding the existing septic system, provided the number of employees/water closets remains within the capacity of the existing septic system.

In the event that greenhouse expansion results in increased sewage flows exceeding the current system capacity, the existing system should be decommissioned and a new system be installed by a licensed septic installer. A further investigation with regards to septic requirements can be completed once expansion plans for the greenhouse operations have been finalized. The investigation would include soil percolation analysis for septic system design and completion of a groundwater impact assessment in accordance with Procedure D-5-4 for Individual On-Site Septic Systems. It should be noted that sewage flows less than 10,000 L/day would be subject to approval under the local municipality through the OBC requirements. In the event that peak sewage flows of 10,000 L/day or greater are expected the septic system would be subject to MECP review and approval under an Environmental Compliance Approval (ECA) as required under the Ontario Water Resources Act (OWRA), Section 53.



#### 7.0 SUMMARY AND CONCLUSIONS

The following provides a summary of the completed hydrogeological assessment:

- 1. The property currently consists of a a greenhouse facility operated as Horta-Craft Ltd., it is proposed to expand greenhouse operations following a phased approach in the future. Current expansion plans are not presently finalized.
- 2. St. Clair Conservation Regulated Area online mapping was reviewed and the site is not located within a Regulated Area. Communities within the St. Clair Conservation are typically provided with surface water based municipal water supplies from Lake Huron or the St. Clair River. Municipal well fields within the St. Clair Conservation boundaries were not reported.
- Based on topographic mapping Site elevation varies from approximately 251 ± masl to 249 ± masl (meters above sea level) towards west/southwest. Local drainage is directed along road side drainage swales to the Ed-Wood Drain situated approximately 300 m west of the site.
- 4. Based on the Ontario Geological Survey (OGS) mapping, the surficial geology at the Site consists of glaciolacustrine deep water deposits of silt and clay overlying glaciolacustrine shallow water deposits of sand. The depth of sand was reported as variable between 12 to 16 m in depth.
- 5. Bedrock, based on a review of geologic mapping, is shown to consist of limestone/dolostone of the Hamilton Group. Bedrock lies at an elevation of approximately 160 masl (depth of approximately 90 m below ground surface). Wells in the vicinity of the site do not encounter bedrock deposits.
- 6. Based on the review of the well records surrounding private water supply wells are compeleted within overburden deposits at depths less than 23 m below grade. Well use is primarily for domestic purposes with private commercial, industrial and agricultural uses also present within the study area. Pumping rates are reported between 15.1 L/min to 56.8 L/min (4 to 15 US gallons per minute). Water quality is described as fresh water.

The following provides a summary of the conclusions of the completed investigation:

 Well yield testing was completed on December 7, 2021. The static water level observed prior to the start of testing was 15.6 m below grade. The step testing consisted of pumping the on-site well at two rates. Each rate was held constant until a stable water level was reached. Intervals were set at 22.7 L/min (6 USG/min) and 56.8 L/min (15 USG/min).



- 2. The maximum allowable drawdown from the on-site well is estimated from the static water level of 15.6 mbgl and the pump setting approximately 1.5 m from the base of the well (22.6 m) and a 1.5 m submergence above the pump for an available drawdown of 4.0 m. The resulting sustainable flow rate accounting for a factor of safety of 0.25 would be 140.1 L/min (37 USG/min).
- 3. The estimated maximum yield was not confirmed with pumping. The existing pump was not of sufficient capacity to pump at rates exceeding 56.8 L/min. It should be noted than any pumping tests exceeding pumping at the rate of 50,000 L/day would require a temporary Permit to Take Water (PTTW) issued by the MECP. The on-site well is expected to be capable of meeting demand less than 50,000 L/day without additional permitting.
- 4. Results of groundwater quality analysis were compared to the Ontario Drinking Water Standards (O.Reg. 169/03). Groundwater quality was observed to remain consistent between sampling events, degradation of water quality with pumping is not expected. Upon completion of testing quality exceedances were noted for aesthetic water quality objectives for hardness, colour, turbidity and iron. Operation guidelines and health based quality guidelines of O.Reg. 169/03 were not observed.
- 5. The tested groundwater is considered potable. The noted aesthetic exceedances are considered reasonably treatable with water softeners (hardness) and reverse osmosis systems (colour, turbidity, iron) sould treatment be required.
- 6. The radius of influence of water taking was calculated given the rate of hydraulic conductivity determined for the underlying sand aquifer and the expected maximum drawdown within the water supply well for the pumping rate of 140 L/min (37 USG/min) determined as the sustainable yield from the on-site well. The resulting radius of influence was calculated at 117 m from the on-site pumping well
- 7. It is expected that surrounding private wells and surface water features will be situated outside of the expected radius of influence of pumping. Impacts resulting from increased water taking from the on-site well are not expected.
- 8. Groundwater quality observed over the duration of the pumping test indicated non-dectable levels of nitrate, an indicator of impacts of surficial land use including subsurface sewage disposal and agricultural fertilizer application. It is expected that the surficial clay layer expected between 12 to 17 m in thickness provides geological isolation from sources of potential contamination.



9. It is anticipated that the sewage disposal system can be reviewed based on expansion plans once available. Based on Chapter 8 of the Ontario Building Code (OBC) for non-residential uses (Table 8.2.1.3.B) sewage flows would be based on the per employee sewage flow (75 L/day/person) or the number of water closets (950 L/day), whichever is greater. Given the daily sewage flow requirement it would be feasible to expand greenhouse capacity without expanding the existing septic system, provided the number of employees/water closets remains within the capacity of the existing septic system.

We trust this report meets with your requirements. Should you have any questions regarding the information presented, please do not hesitate to contact our office.

# Yours truly, **Terraprobe Inc.**

and fluggle

Paul L. Raepple Project Manager-Hydrogeology



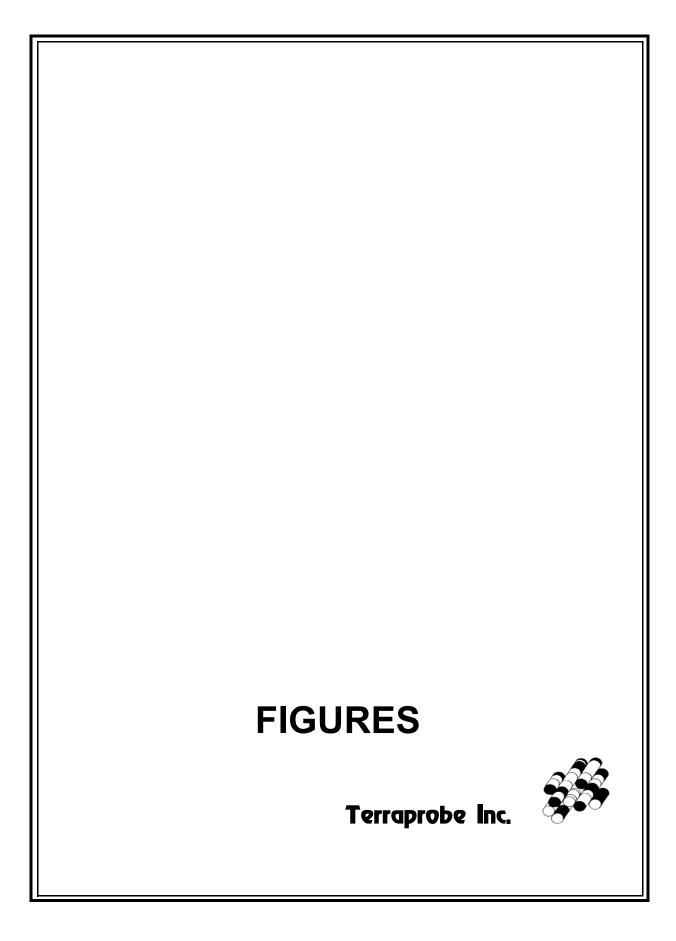
Row

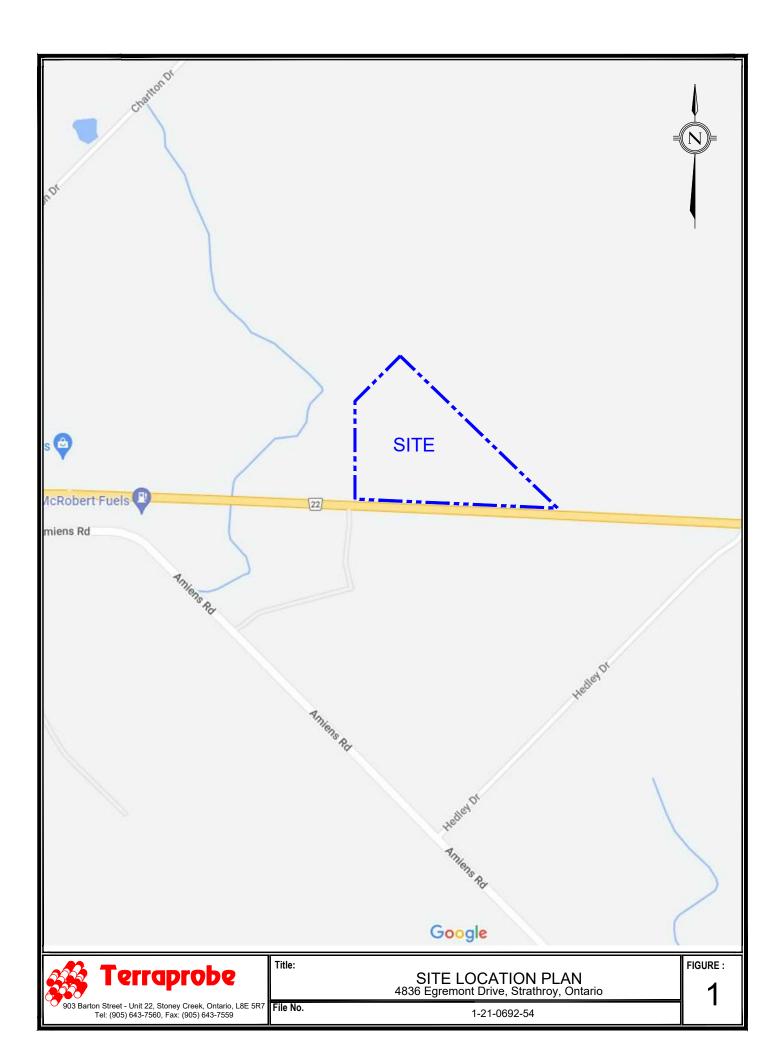
Shama M. Qureshi, P.Eng., P.Geo., QP<sub>RA-ESA</sub> Principal

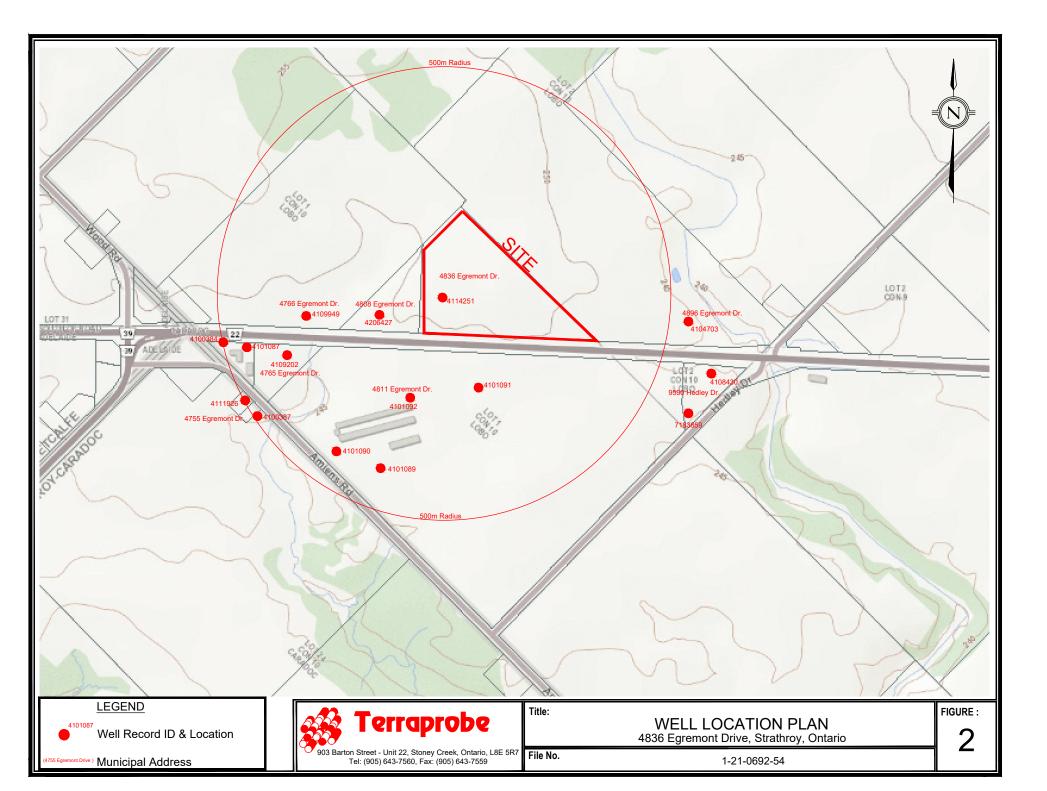


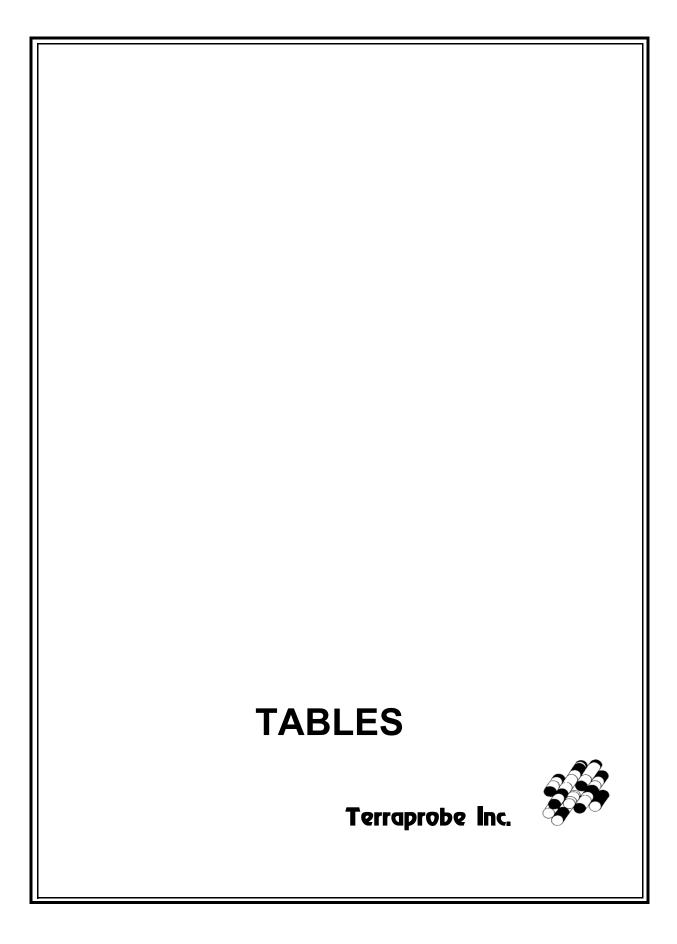
#### LIMITATIONS

This report was prepared by Terraprobe Inc. for the use of **Horta Craft Ltd.** and is intended to provide an assessment of the hydrogeological condition on the property located at **4836 Egremont Drive**, **Strathroy, ON**. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Terraprobe accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or property values or requirements for follow-up actions and costs.


The assessment should not be considered a comprehensive audit that eliminates all risks. The information presented in this report is based on information collected during the completion of well testing conducted by Terraprobe Inc. It is based on conditions at the property at the time of testing.


There is no warranty expressed or implied by this report regarding the condition of the property. Professional judgment was exercised in gathering and analyzing information collected by our staff, as well as that submitted by others. The conclusions presented are the product of professional care and competence and cannot be construed as an absolute guarantee.


In the event that during future work, new information regarding the condition of the property is encountered, or the proposed development is changed from that which was provided to Terraprobe with respect to the property, Terraprobe should be notified in order that we may re-evaluate the findings of this assessment and provide amendments, as required.


Neither possession of the Work, nor a copy of it, carries the right of publication. All copyright in the Work is reserved to Terraprobe Inc. The Work shall not be disclosed, produced or reproduced, quoted from, or referred to, in whole or in part, or published in any manner, without the express written consent of **Terraprobe Inc.** or/and **Horta-Craft Ltd**.





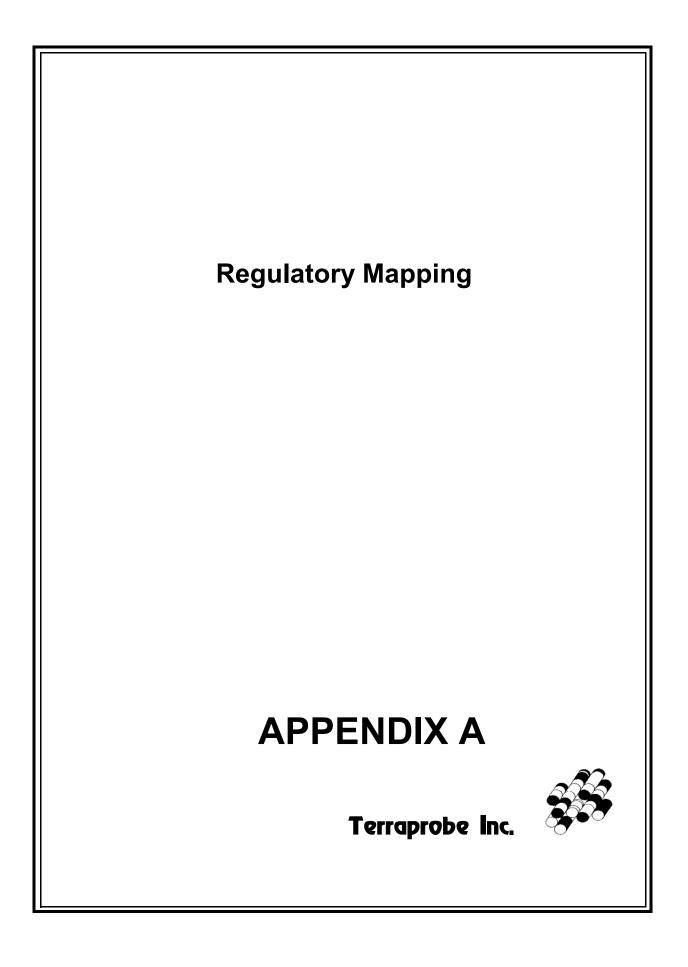






# Table 1: Results of Groundwater Quality SamplingHorta-Craft Ltd. Greenhouse Expansion4836 Egremont DriveStrathroy, Ontario

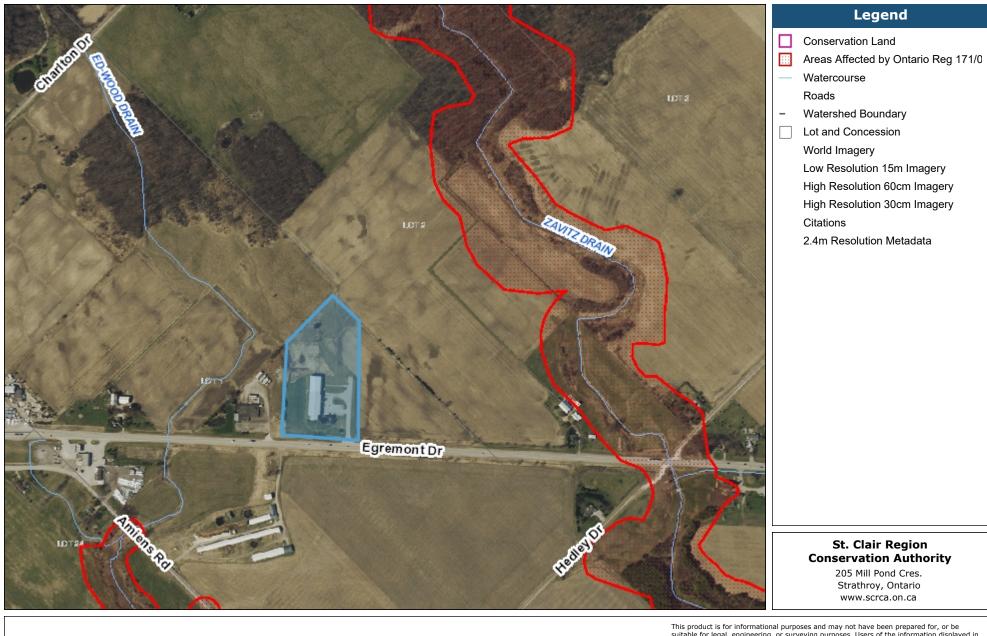
| Sampling Date/Time           | Units     |      |          | Detection<br>Limit | 7-Dec-21 | 7-Dec-21 |
|------------------------------|-----------|------|----------|--------------------|----------|----------|
|                              |           |      |          | Linit              | 12:00 PM | 3:00 PM  |
|                              |           | ODWS | AO/OG    |                    |          |          |
| INORGANICS                   |           |      |          |                    | 500      | 500      |
| Conductivity                 | umhos/cm  |      | 00.400   | 3.0                | 580      | 580      |
| Hardness (as CaCO3)          | mg/L      |      | 80-100   | 2.4                | 282      | 286      |
| Dissolved Organic Carbon     | mg/L      |      | 5        | 0.50               | 1.62     | 1.58     |
| pH                           | pH units  |      | 6.5-8.5  | 0.10               | 8.06     | 8.02     |
| Sulfate (SO4)                | mg/L      |      | 500      | 0.30               | 33.8     | 34.7     |
| Alkalinity, Total (as CaCO3) | mg/L      |      | 30-500   | 10                 | 275      | 277      |
| Chloride (Cl)                | mg/L      |      | 250      | 0.50               | 1.01     | 0.98     |
| Phosphorus, Total            | mg/L      |      |          | 0.0030             | 0.0037   | 0.0030   |
| Nitrite (as N)               | mg/L      | 1.0  |          | 0.010              | <0.010   | <0.010   |
| Nitrate (as N)               | mg/L      | 10.0 |          | 0.020              | <0.020   | <0.020   |
| Color, True                  | T.C.U.    |      | 5        | 2.0                | 42.9     | 43.1     |
| Turbidity                    | NTU       |      | 5        | 0.10               | 9.34     | 9.93     |
| Total Dissolved Solids       | mg/L      |      | 500      | 20                 | 263      | 296      |
| METALS                       |           |      |          |                    |          |          |
| Aluminum (Al)                | ug/L      |      | 100      | 10                 | <10      | <10      |
| Antimony (Sb)                | ug/L      | 6    |          | 0.60               | <0.60    | <0.60    |
| Arsenic (As)                 | ug/L      | 25   |          | 1.0                | 12.5     | 12.6     |
| Barium (Ba)                  | ug/L      | 1000 |          | 10                 | 433      | 438      |
| Cadmium (Cd)                 | ug/L      | 5    |          | 0.10               | <0.10    | <0.10    |
| Calcium (Ca)                 | mg/L      |      |          | 0.50               | 64.5     | 65.4     |
| Chromium (Cr)                | ug/L      | 50   |          | 1.0                | <1.0     | <1.0     |
| Copper (Cu)                  | ug/L      |      | 1000     | 1.0                | <1.0     | <1.0     |
| Iron (Fe)                    | ug/L      |      | 300      | 50                 | 1010     | 1020     |
| Lead (Pb)                    | ug/L      | 10   |          | 1.0                | <1.0     | <1.0     |
| Magnesium (Mg)               | mg/L      |      |          | 0.50               | 29.4     | 29.8     |
| Manganese (Mn)               | ug/L      |      | 50       | 1.0                | 25.3     | 24.6     |
| Selenium (Se)                | ug/L      | 10   |          | 5.0                | <5.0     | <5.0     |
| Sodium (Na)                  | mg/L      |      | 200 / 20 | 0.50               | 11.4     | 11.5     |
| Uranium (U)                  | ug/L      | 20   |          | 5.0                | <5.0     | <5.0     |
| Zinc (Zn)                    | ug/L      |      | 5000     | 3.0                | <3.0     | <3.0     |
| MICROBIOLOGY                 |           |      |          |                    |          |          |
| Total Coliforms              | CFU/100ml | 0    |          |                    | 1        | 0        |
| Escherichia Coli             | CFU/100ml | 0    |          |                    | 0        | 0        |


NTU - Nephelometric Turbidity Unit

TCU - True Colour Unit

CFU - Colony Forming Units

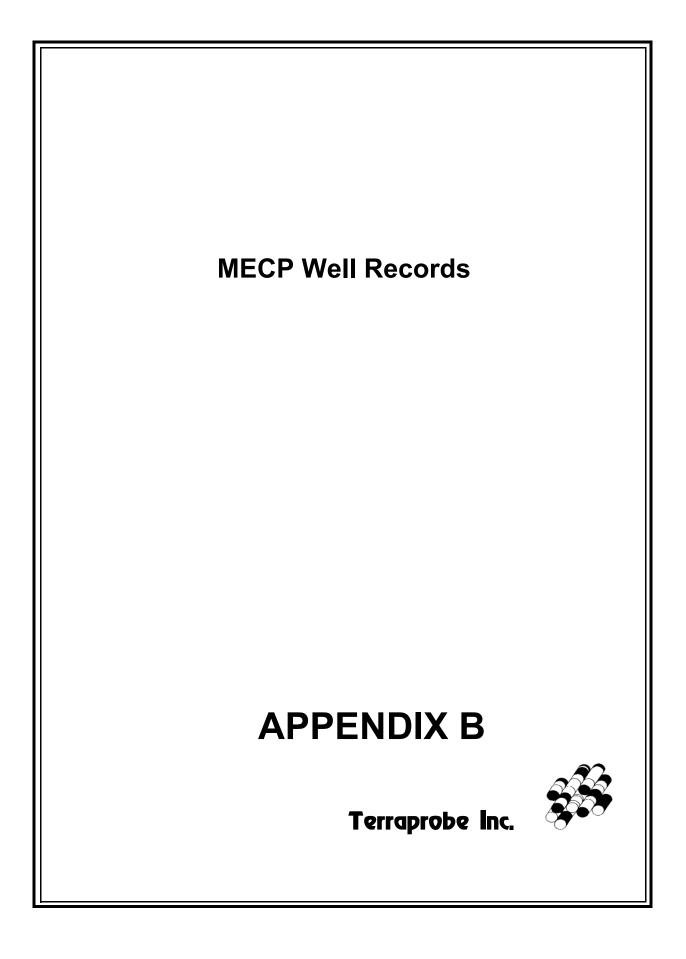
ODWS - Ontario Drinking Water Standards


AO/OG - Aesthetic Objectives/ Operational Guidelines





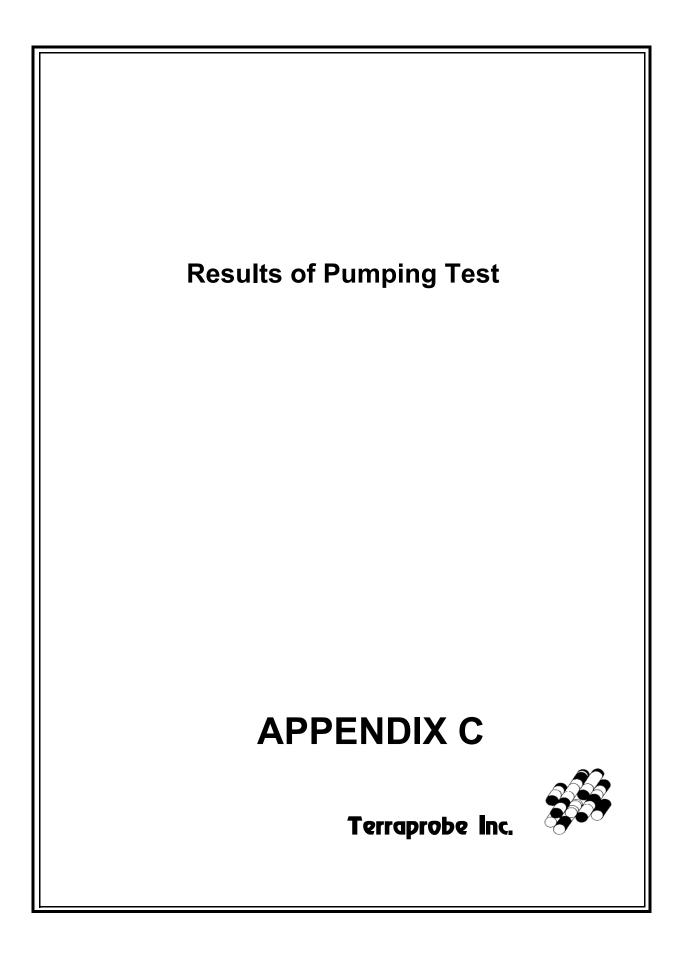
# SCRCA Maps


21-Mar-2022



0 100 200 400 m

1:10000


This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of the information displayed in this map product are strongly cautioned to verify all information before making any decisions. © 2017 Reproduction of this map is prohibited without written permission from the St. Clair Region Conservation Authority.



Appendix B: Well Record Summary Horta-Craft Ltd. Greenhouse Expansion 4836 Egremont Drive Strathroy, Ontario

| Well ID | Easting | Northing | Ground           | Well Use       | Year        | Static Water | <b>Pumping Rate</b> | Stratigraphy (depth in m)                                     |
|---------|---------|----------|------------------|----------------|-------------|--------------|---------------------|---------------------------------------------------------------|
| weirid  | Lasting | Northing | Elevation (masl) | wen ose        | Constructed | Level (m)    | (L/min)             | Stratigraphy (depth in in)                                    |
| 4100384 | 454809  | 4761424  | 282.5            | Domestic       | 1956        | 9.1          | 22.7                | Topsoil (1) Clay (13.1) Hardpan (14.0) Sand (19.5)            |
| 4111926 | 454855  | 4761326  | 286.0            | Domestic       | 1989        | 13.7         | 56.8                | Topsoil (1) Sand (1.8) Clay (17.7) Sand (22.9)                |
| 4100387 | 454896  | 4761333  | 282.5            | Domestic       | 1964        | 12.2         | 15.1                | Clay (10.7) Sand (19.5)                                       |
| 4109202 | 454878  | 4761466  | 286.0            | Domestic       | 1980        | 7.6          | 30.3                | Previously Dug (2.4) Clay (19.8) Sand (22.9) Sand/Clay (23.8) |
| 4101087 | 454891  | 4761477  | 283.9            | Comercial      | 1958        | 9.1          | 34.1                | Fill (1.8) Clay (17.1) Sand (20.7)                            |
| 4109949 | 454906  | 4761530  | 287.8            | Domestic/Stock | 1983        | 12.8         | 30.3                | Clay (12.8) Sand (19.8)                                       |
| 4101090 | 455044  | 4761278  | 279.4            | Stock          | 1966        | Dry          | N/A                 | Clay (12.8) Sand/Hardpan (20.7) Clay (22.9)                   |
| 4101089 | 455101  | 4761254  | 280.1            | Abandonned     | 1966        | Dry          | N/A                 | Clay (12.8) Sand/Hardpan (20.7) Clay (22.9)                   |
| 4106427 | 455133  | 4761530  | 282.5            | Industrial     | 1973        | 14.0         | 41.6                | Topsoil (1) Clay 15.2) Sand/Clay (19.8) Sand (24.4)           |
| 4114251 | 455143  | 4761558  | -                | Commercial     | 1999        | 14.8         | 37.9                | Clay/Stones (18.3) Sand (22.6)                                |
| 4101092 | 455189  | 4761456  | 283.2            | Stock          | 1966        | 12.8         | 56.8                | Clay (11.6) Sand (21.3) Sand/Clay (22.6)                      |
| 4101091 | 455275  | 4761402  | 282.2            | Domestic/Stick | 1966        | 14.0         | 15.1                | Sand (1) Clay (12.2) Sand/Hardpan (15.2) Sand (17.7)          |
| 4104703 | 455843  | 4761500  | 279.7            | Stock          | 1969        | 10.7         | 37.9                | Clay (15.8) Sand (18.0)                                       |
| 4108430 | 455893  | 4761402  | 279.4            | Domestic       | 1978        | 8.8          | 22.7                | Topsoil (1) Clay (10.1) Sand (14.3)                           |
| 7183859 | 455844  | 4761325  | -                | Not Used       | 2012        | 10.8         | 37.9                | Clay (9.8) Sand (15.2)                                        |

| Ontario Ministry<br>of the<br>Environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |                                                                                         | WATER WE                                 | LL RI            | ECO                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------|------------------|-----------------------|
| Print only in spaces provided.<br>Mark correct box with a checkmark, where applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 2                                                                           | 4114251                                                                                 | Municipality Con<br>ALOOITI Con<br>10 14 |                  | 1   <b>1</b><br>32 23 |
| County or District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Township/Borough/City/Tow                                                     | /n/Village                                                                              | Con block tract surve                    | ry, etc. L       | ot °                  |
| Owner's surname                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Address                                                                       | l                                                                                       | Date                                     | l                | -                     |
| Horta Craft Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1956 Ma                                                                       | Ilard Koad                                                                              | Basin Code II                            | <u>2 day 9 r</u> | nonth ly              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17 0 18                                                                       |                                                                                         | 31                                       | Liii             |                       |
| LOG OF<br>General colour Most common material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OVERBURDEN AND BEDROC<br>Other materials                                      | CK MATERIALS (see instruction<br>General de                                             |                                          | Dept             | h - feet              |
| D 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                               | General ye                                                                              |                                          | From             | To                    |
| Brown clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STONES                                                                        |                                                                                         | · · ·                                    | 0                | 16                    |
| Blue clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | stones                                                                        |                                                                                         |                                          | 16               | 72                    |
| Blue clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SIIT                                                                          |                                                                                         |                                          | 71               | 60                    |
| Grey sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | black sand                                                                    | tiner                                                                                   | <u>^</u>                                 | 60               | 63                    |
| Grey sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | black sand                                                                    | medium -                                                                                | tine                                     | 63               | 72%                   |
| Blue clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fine sand                                                                     |                                                                                         |                                          | 723              | 74                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                         |                                          |                  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | 16" plua                                                                                |                                          |                  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | 10" sanc                                                                                | (pack                                    |                  |                       |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               |                                                                                         |                                          |                  |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               | <u> </u>                                                                                |                                          |                  |                       |
| 41 WATER RECORD 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CASING & OPEN HOLE REC                                                        |                                                                                         | ning 31-33 Diameter                      | 34-38 Leng       | 75<br>th 39           |
| Nater found Kind of water linside<br>diam<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Material Wall<br>Inches F                                                     | Tom To<br>13.16<br>13.16<br>13.16<br>13.16<br>13.16<br>13.16<br>13.16<br>13.16<br>13.16 |                                          | nches 44         | - 3 fe                |
| A The Safer 4 Minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 12 Steel 12<br>2 🗋 Galvanized                                               |                                                                                         | type                                     | Depth at top     | 41-44                 |
| 15-18 1 🖸 Fresh 3 🗋 Sulphur 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>3</sup> □ Concrete<br><sup>4</sup> □ Open hole<br><sup>5</sup> □ Plastic | 2 642 USTain                                                                            | less sicel                               | 60               | feet                  |
| 20-23 1 C Sany 6 Gas 17-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 Galvanized                                                                  | 20-23 An                                                                                |                                          | Abandonm         |                       |
| 2 □ Salty 6 □ Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 Concrete<br>4 Open hole                                                     | Depth set at - fe<br>From To                                                            | Material and type (Ce                    | ment grout, be   | intonite, etc         |
| 2 Salty 6 Goo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 □ Plastic<br>1 □ Steel 26                                                   | 27:30 3.1913 3.1                                                                        | Benton                                   | ite              |                       |
| 30-33 1 C Fresh 3 Sulphur 34 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 Galvanized<br>3 Concrete<br>4 Open hole                                     |                                                                                         | 0-33 80                                  |                  | ,                     |
| <sup>2</sup> Salty <sup>6</sup> Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 🗆 Plastic                                                                   |                                                                                         |                                          | •                |                       |
| Pumping test method         10         Pumping rate         11.14           1         Pumpi 2         Bailer         GPM         GPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Duration of pumping<br>15-16 17-18<br>Hours Mins                              | LOCAT                                                                                   | TON OF WELL                              | -                |                       |
| Static level end of pumping 25 Water levels during 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pumping 2 Recovery                                                            | In diagram below show di<br>Indicate north by arrow.                                    | stances of well from r                   | bad and lot      | t line.               |
| $\frac{1}{1} \frac{1}{2} \frac{1}$ | 45 minutes 32-34 60 minutes 35-37                                             |                                                                                         | 7                                        |                  |                       |
| 160 tf flowing give rate 3841 Pump intake set at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51 feet 51 feet<br>Water at end of test 42                                    |                                                                                         |                                          |                  |                       |
| If flowing give rate GPM GO feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clear Cloudy                                                                  |                                                                                         |                                          |                  |                       |
| Recommended pump type Recommended 43-45<br>Shallow Deep rump setting feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Recommended 46-49<br>pump rate / D GPM                                        |                                                                                         | r.                                       |                  |                       |
| 50-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                                         | 1C                                       |                  |                       |
| TINAL STATUS OF WELL         54           1         1         1         2         Water supply         5         □         Abandoned, insufficient su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ronty <sup>9</sup> □ Linfinished                                              |                                                                                         | SNIGTIN                                  |                  |                       |
| <ul> <li><sup>2</sup> Observation well</li> <li><sup>6</sup> Abandoned, poor quality</li> <li><sup>3</sup> Test hole</li> <li><sup>7</sup> Abandoned (Other)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>10</sup> Replacement well                                                | well                                                                                    | EL I                                     |                  |                       |
| <sup>4</sup> Recharge well <sup>8</sup> Dewatering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                               | *                                                                                       | B                                        |                  |                       |
| VATER USE 5556<br>1 □ Domestic 5 2 Commercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 🗌 Not use                                                                   | n                                                                                       |                                          | 1<br>L           |                       |
| 2 □ Stock 6 □ Municipal<br>3 □ Irrigation 7 □ Public supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10 🖸 Other                                                                    |                                                                                         |                                          | LANE             |                       |
| 4 🗌 Industrial 👘 8 🔲 Cooling & air conditioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |                                                                                         |                                          | 14               |                       |
| Cable tool     S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 🗆 Driving                                                                   | Egremont Dr                                                                             | ive                                      |                  |                       |
| <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>10</sup> Digging<br><sup>11</sup> Other                                  |                                                                                         |                                          |                  | 05                    |
| <sup>4</sup> Rotary (air) <sup>8</sup> I Jetting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                                                         |                                          | 2054             | 192                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Well Contractor's Licence No.                                                 | Data 58 Contractor                                                                      | A 59-62 Date receiv                      |                  | 63-68                 |
| Varme of Well Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110011                                                                        |                                                                                         | 1001                                     |                  |                       |
| - Parsons Well Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4204                                                                          | Date of inspection Inspe                                                                |                                          | 1 2 19           |                       |
| - Parsons Well Drilling<br>RR#2 Ilderton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 4204                                                                        |                                                                                         | 144.                                     | 1 2 19           |                       |
| Address<br>RR#2 Ilderton<br>Vene of Well Technician                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 4204                                                                        |                                                                                         | ctor                                     |                  | 99                    |
| - Parsons Well Drilling<br>RR#2 Ilderton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 4204                                                                        |                                                                                         | ctor                                     | 1 2 19<br>55.ES( | 99                    |



| 5                    |
|----------------------|
| <                    |
| Nell                 |
| -                    |
| -                    |
| -                    |
| -                    |
|                      |
| D                    |
| 00000000             |
| <b>Yield Testing</b> |
|                      |
| -                    |
| m'                   |
|                      |
| S                    |
| and a                |
| -                    |
| 200                  |
| -                    |
| 010                  |
|                      |
|                      |

Date: December 7, 2021

Technician Name: Jason McLeod (T-3021)

\_\_\_ Confirm Tag#<u>\_\_\_otag</u>\_\_\_

Well Owner & Location: Horta Craft Ltd. @ 4836 Egremont Drive, Strathroy, Ontario N7G 3H3

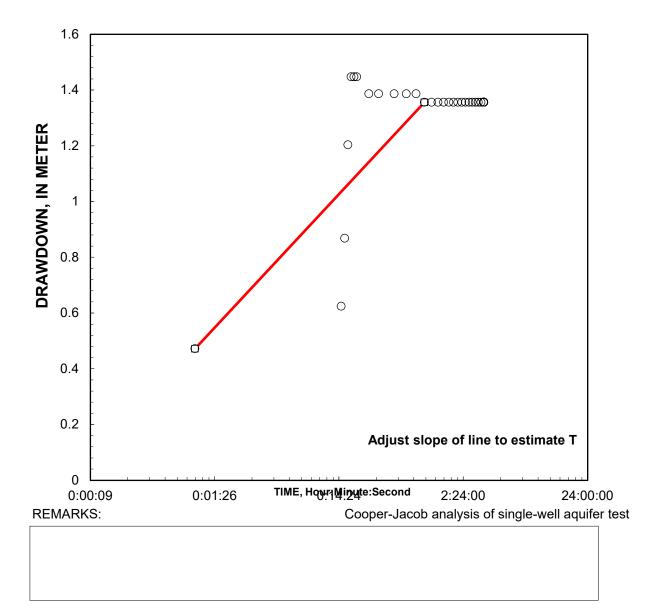
| Static level:                                                                                                  | D         | Draw Down      | Dr    | Draw Down             | R         | Recovery                                       |   |
|----------------------------------------------------------------------------------------------------------------|-----------|----------------|-------|-----------------------|-----------|------------------------------------------------|---|
| 51.15 feet                                                                                                     | Time      | Water Level    | Time  | Water Level           | Time      | Water Level                                    |   |
| (Top of Case)                                                                                                  | (min)     | (ft) 6 GPM     | (min) | (ft) 15 GPM           | (min)     | (ft)                                           |   |
| Pump intake set                                                                                                | Ц         | 52.7           | 16    | 54.0                  | 1         | 51.4                                           |   |
| at (ft):                                                                                                       | 2         | 53.2           | 17    | 55.1                  | 2         | 51.4                                           |   |
| 62 feet                                                                                                        | З         | 53.2           | . 18  | 55.9                  | ω         | 51.4                                           |   |
| Duration of                                                                                                    | 4         | 53.2           | 19    | 55.9                  | 4         | 51.3                                           |   |
| Pumping:                                                                                                       | 5         | 53.2           | 20    | 55.9                  | ы         | 51.3                                           |   |
|                                                                                                                | 10        | 53.2           | 25    | 55.7                  | 10        | 51.3                                           |   |
| 4 hr+ 8 min                                                                                                    | 15        | 53.2           | 30    | 55.7                  |           |                                                |   |
| Final water level                                                                                              |           |                | 40    | 55.7                  |           |                                                | P |
| end of pumping                                                                                                 |           |                | 50    | 55.7                  |           |                                                |   |
| (ft):                                                                                                          |           |                | 60    | 55.7                  |           |                                                |   |
| 51.6 feet                                                                                                      |           |                | 70    | 55.6                  |           |                                                |   |
|                                                                                                                |           |                | 08    | 55.6                  |           |                                                |   |
| Recommended                                                                                                    |           |                | 90    | 55.6                  |           |                                                |   |
| pump depth (ft):                                                                                               |           |                | 100   | 55.6                  |           |                                                |   |
| n/a                                                                                                            |           |                | 110   | 55.6                  |           |                                                |   |
|                                                                                                                |           |                | 120   | 55.6                  |           |                                                |   |
| Recommended                                                                                                    |           |                | 130   | 55.6                  |           |                                                |   |
| pump rate                                                                                                      |           |                | 140   | 55.6                  |           |                                                |   |
| (GPM):                                                                                                         |           |                | 150   | 55.6                  |           |                                                |   |
| 15 GPM                                                                                                         |           |                | 160   | 55.6                  |           |                                                |   |
|                                                                                                                |           |                | 170   | 55.6                  |           |                                                |   |
| Well Production                                                                                                |           |                | 180   | 55.6                  |           |                                                |   |
| (GPM):                                                                                                         |           |                | 190   | 55.6                  |           |                                                |   |
| 15 + GPM                                                                                                       |           |                | 200   | 55.6                  |           |                                                |   |
| And a second |           |                | 210   | 55.6                  |           |                                                |   |
| End of Pump Test: Water Clear? Yes $\bigotimes$ No $\bigcirc$                                                  | Water (   | Clear? Yes 🚫 N |       | Other: <u>Chlorin</u> | ated well | Other: <u>Chlorinated well upon completion</u> |   |
| Notes: Casing is 4 feet above ground.                                                                          | feet abov | ve ground.     |       |                       |           |                                                |   |

#### Pumping\_Cooper-Jacob

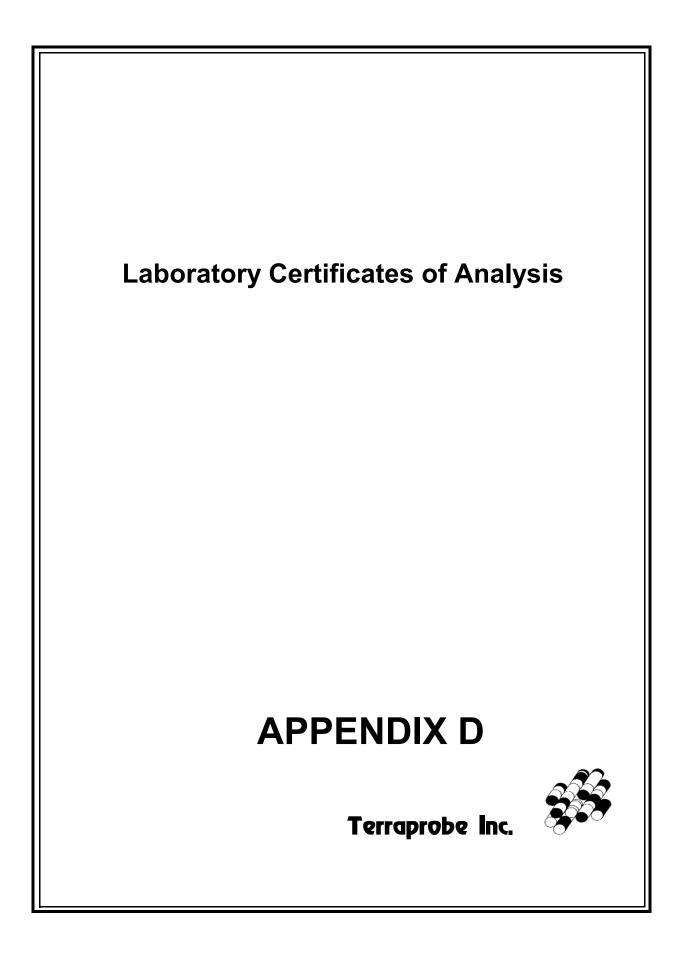
WELL ID: 4836 Egremont Drive, Strathroy, ON

|                                 | INPUT           |
|---------------------------------|-----------------|
| Construction:                   |                 |
| Casing dia. (d <sub>c</sub> )   | 0.15 Meter      |
| Annulus dia. (d <sub>w</sub> )  | 0.3 Meter       |
| Screen Length (L)<br>Depths to: | 2.13 Meter      |
| water level (DTW)               | 15.6 Meter      |
| Top of Aquifer                  | 18.3 Meter      |
| Base of Aquifer                 | 22.1 Meter      |
| Annular Fill:                   |                 |
| across screen                   | Coarse Sand     |
| above screen                    | Bentonite       |
| Aquifer Material                | Medium Sand     |
| FLOW RATE                       | 56.8 liters/min |

Local ID: 4836 Egremont Dr. Date: ####### Time: 0:00


#### COMPUTED

Aquifer thickness = 3.8 Meter


Slope = 0.146032 Meter/log10

#### Input is consistent.

| K = | 0.000095 | Meter/Second               |
|-----|----------|----------------------------|
| T = | 0.00036  | Meter <sup>2</sup> /Second |



|       | Reduced Data    |             |
|-------|-----------------|-------------|
|       | Time,           | Water Level |
| Entry | Date Hr:Min:Sec | Meter       |
| 1     | 1-0-00 0:00:00  | 15.59       |
| 2     | 1-0-00 0:01:00  | 16.06       |
| 3     | 1-0-00 0:15:00  | 16.22       |
| 4     | 1-0-00 0:16:00  | 16.46       |
| 5     | 1-0-00 0:17:00  | 16.79       |
| 6     | 1-0-00 0:18:00  | 17.04       |
| 7     | 1-0-00 0:19:00  | 17.04       |
| 8     | 1-0-00 0:20:00  | 17.04       |
| 9     | 1-0-00 0:25:00  | 16.98       |
| 10    | 1-0-00 0:30:00  | 16.98       |
| 11    | 1-0-00 0:40:00  | 16.98       |
| 12    | 1-0-00 0:50:00  | 16.98       |
| 13    | 1-0-00 1:00:00  | 16.98       |
| 14    | 1-0-00 1:10:00  | 16.95       |
| 15    | 1-0-00 1:20:00  | 16.95       |
| 16    | 1-0-00 1:30:00  | 16.95       |
| 17    | 1-0-00 1:40:00  | 16.95       |
| 18    | 1-0-00 1:50:00  | 16.95       |
| 19    | 1-0-00 2:00:00  | 16.95       |
| 20    | 1-0-00 2:10:00  | 16.95       |
| 21    | 1-0-00 2:20:00  | 16.95       |
| 22    | 1-0-00 2:30:00  | 16.95       |
| 23    | 1-0-00 2:40:00  | 16.95       |
| 24    | 1-0-00 2:50:00  | 16.95       |
| 25    | 1-0-00 3:00:00  | 16.95       |
| 26    | 1-0-00 3:10:00  | 16.95       |
| 27    | 1-0-00 3:20:00  | 16.95       |





TERRAPROBE-BRAMPTON ATTN: Paul Raepple 11 Indell Lane Brampton ON L6T 3Y3 Date Received: 07-DEC-21 Report Date: 15-DEC-21 16:03 (MT) Version: FINAL

Client Phone: 905-796-2650

# Certificate of Analysis

Lab Work Order #: L2670334 Project P.O. #: NOT SUBMIT

Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 1-21-0692-54

Smi

Emily Smith Account Manager [This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26, Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

**RIGHT SOLUTIONS** RIGHT PARTNER

# ALS ENVIRONMENTAL ANALYTICAL REPORT

| Sample Details/Parameters                                                          | Result        | Qualifier* | D.L.   | Units     | Extracted | Analyzed  | Batch    |
|------------------------------------------------------------------------------------|---------------|------------|--------|-----------|-----------|-----------|----------|
| L2670334-1 PW1 SA1                                                                 |               |            |        |           |           |           |          |
| Sampled By: P. RAEPPLE on 07-DEC-21 @ 12:00<br>Matrix: WATER                       |               |            |        |           |           |           |          |
| Physical Tests                                                                     |               |            |        |           |           |           |          |
| Color, True                                                                        | 42.9          |            | 2.0    | T.C.U.    |           | 08-DEC-21 | R5670885 |
| Conductivity                                                                       | 580           |            | 3.0    | umhos/cm  |           | 08-DEC-21 | R5672476 |
| Hardness (as CaCO3)                                                                | 282           | нтс        | 2.4    | mg/L      |           | 15-DEC-21 |          |
| На                                                                                 | 8.06          |            | 0.10   | pH units  |           | 08-DEC-21 | R5672476 |
| Total Dissolved Solids                                                             | 263           | DLDS       | 20     | mg/L      |           | 11-DEC-21 | R5677236 |
| Turbidity                                                                          | 9.34          |            | 0.10   | NTU       | 09-DEC-21 | 09-DEC-21 | R5675752 |
| Anions and Nutrients                                                               |               |            |        |           |           |           |          |
| Alkalinity, Total (as CaCO3)                                                       | 275           |            | 10     | mg/L      |           | 08-DEC-21 | R5672476 |
| Chloride (CI)                                                                      | 1.01          |            | 0.50   | mg/L      |           | 09-DEC-21 | R5674534 |
| Nitrate (as N)                                                                     | <0.020        |            | 0.020  | mg/L      |           | 09-DEC-21 | R5674534 |
| Nitrite (as N)                                                                     | <0.010        |            | 0.010  | mg/L      |           | 09-DEC-21 | R5674534 |
| Phosphorus, Total                                                                  | 0.0037        |            | 0.0030 | mg/L      | 08-DEC-21 | 09-DEC-21 | R5672489 |
| Sulfate (SO4)                                                                      | 33.8          |            | 0.30   | mg/L      |           | 09-DEC-21 | R5674534 |
| Organic / Inorganic Carbon                                                         |               |            |        |           |           |           |          |
| Dissolved Carbon Filtration Location                                               | LAB           |            |        |           |           | 08-DEC-21 | R5671436 |
| Dissolved Organic Carbon                                                           | 1.62          |            | 0.50   | mg/L      | 08-DEC-21 | 09-DEC-21 | R5674156 |
| Bacteriological Tests                                                              |               |            |        |           |           |           |          |
| Escherichia Coli                                                                   | 0             |            | 0      | MPN/100mL |           | 09-DEC-21 | R5674911 |
| Total Coliforms                                                                    | 1             |            | 0      | MPN/100mL |           | 09-DEC-21 | R5674911 |
| Total Metals                                                                       |               |            |        |           |           |           |          |
| Aluminum (Al)                                                                      | <10           |            | 10     | ug/L      |           | 15-DEC-21 | R5679226 |
| Antimony (Sb)                                                                      | <0.60         |            | 0.60   | ug/L      |           | 15-DEC-21 | R5679226 |
| Arsenic (As)                                                                       | 12.5          |            | 1.0    | ug/L      |           | 15-DEC-21 | R5679226 |
| Barium (Ba)                                                                        | 433           |            | 10     | ug/L      |           | 15-DEC-21 | R5679226 |
| Cadmium (Cd)                                                                       | <0.10         |            | 0.10   | ug/L      |           | 15-DEC-21 | R5679226 |
| Calcium (Ca)                                                                       | 64.5          |            | 0.50   | mg/L      |           | 15-DEC-21 | R5679226 |
| Chromium (Cr)                                                                      | <1.0          |            | 1.0    | ug/L      |           | 15-DEC-21 | R5679226 |
| Copper (Cu)                                                                        | <1.0          |            | 1.0    | ug/L      |           | 15-DEC-21 | R5679226 |
| Iron (Fe)                                                                          | 1010          |            | 50     | ug/L      |           | 15-DEC-21 | R5679226 |
| Lead (Pb)                                                                          | <1.0          |            | 1.0    | ug/L      |           | 15-DEC-21 | R5679226 |
| Magnesium (Mg)                                                                     | 29.4          |            | 0.50   | mg/L      |           | 15-DEC-21 | R5679226 |
| Manganese (Mn)                                                                     | 25.3          |            | 1.0    | ug/L      |           | 15-DEC-21 | R5679226 |
| Selenium (Se)                                                                      | <5.0          |            | 5.0    | ug/L      |           | 15-DEC-21 | R5679226 |
| Sodium (Na)                                                                        | 11.4          |            | 0.50   | mg/L      |           | 15-DEC-21 | R5679226 |
| Uranium (U)                                                                        | <5.0          |            | 5.0    | ug/L      |           | 15-DEC-21 | R5679226 |
| Zinc (Zn)                                                                          | <3.0          |            | 3.0    | ug/L      |           | 15-DEC-21 | R5679226 |
| L2670334-2 PW1 SA2<br>Sampled By: P. RAEPPLE on 07-DEC-21 @ 15:00<br>Matrix: WATER |               |            |        |           |           |           |          |
| Physical Tests                                                                     |               |            |        |           |           |           |          |
| Color, True                                                                        | 43.1          |            | 2.0    | T.C.U.    |           | 08-DEC-21 | R5670885 |
| Conductivity                                                                       | 580           |            | 3.0    | umhos/cm  |           | 08-DEC-21 | R5672476 |
| * Refer to Referenced Information for Qualifiers (if any) and                      | d Mathadalam. |            |        |           |           |           |          |

\* Refer to Referenced Information for Qualifiers (if any) and Methodology.

# ALS ENVIRONMENTAL ANALYTICAL REPORT

| 2670334-2 PW1 SA2                                           | Result               | Qualifier* | D.L.        | Units        | Extracted | Analyzed  | Batch     |
|-------------------------------------------------------------|----------------------|------------|-------------|--------------|-----------|-----------|-----------|
| ampled By: P. RAEPPLE on 07-DEC-21 @ 15:00<br>Matrix: WATER |                      |            |             |              |           |           |           |
| Physical Tests                                              |                      |            |             |              |           |           |           |
| Hardness (as CaCO3)                                         | 286                  | HTC        | 2.4         | mg/L         |           | 15-DEC-21 |           |
| pH                                                          | 8.02                 |            | 0.10        | pH units     |           | 08-DEC-21 | R5672476  |
| Total Dissolved Solids                                      | 296                  | DLDS       | 20          | mg/L         |           | 11-DEC-21 | R5677236  |
| Turbidity                                                   | 9.93                 |            | 0.10        | NTU          | 09-DEC-21 | 09-DEC-21 | R5675752  |
| Anions and Nutrients                                        | 0.00                 |            | 0.10        |              |           |           |           |
| Alkalinity, Total (as CaCO3)                                | 277                  |            | 10          | mg/L         |           | 08-DEC-21 | R5672476  |
| Chloride (Cl)                                               | 0.98                 |            | 0.50        | mg/L         |           | 09-DEC-21 | R5674534  |
| Nitrate (as N)                                              | <0.020               |            | 0.020       | mg/L         |           | 09-DEC-21 | R5674534  |
| Nitrite (as N)                                              | <0.010               |            | 0.010       | mg/L         |           | 09-DEC-21 | R5674534  |
| Phosphorus, Total                                           | 0.0030               |            | 0.0030      | mg/L         | 08-DEC-21 | 09-DEC-21 | R5672489  |
| Sulfate (SO4)                                               | 34.7                 |            | 0.30        | mg/L         |           | 09-DEC-21 | R5674534  |
| Organic / Inorganic Carbon                                  |                      |            |             | 5            |           |           |           |
| Dissolved Carbon Filtration Location                        | LAB                  |            |             |              |           | 08-DEC-21 | R5671436  |
| Dissolved Organic Carbon                                    | 1.58                 |            | 0.50        | mg/L         | 08-DEC-21 | 09-DEC-21 | R5674156  |
| Bacteriological Tests                                       |                      |            |             |              |           |           |           |
| Escherichia Coli                                            | 0                    |            | 0           | MPN/100mL    |           | 09-DEC-21 | R5674911  |
| Total Coliforms                                             | 0                    |            | 0           | MPN/100mL    |           | 09-DEC-21 | R5674911  |
| Total Metals                                                |                      |            |             |              |           |           |           |
| Aluminum (Al)                                               | <10                  |            | 10          | ug/L         |           | 15-DEC-21 | R5679226  |
| Antimony (Sb)                                               | <0.60                |            | 0.60        | ug/L         |           | 15-DEC-21 | R5679226  |
| Arsenic (As)                                                | 12.6                 |            | 1.0         | ug/L         |           | 15-DEC-21 | R5679226  |
| Barium (Ba)                                                 | 438                  |            | 10          | ug/L         |           | 15-DEC-21 | R5679226  |
| Cadmium (Cd)                                                | <0.10                |            | 0.10        | ug/L         |           | 15-DEC-21 | R5679226  |
| Calcium (Ca)                                                | 65.4                 |            | 0.50        | mg/L         |           | 15-DEC-21 | R5679226  |
| Chromium (Cr)                                               | <1.0                 |            | 1.0         | ug/L         |           | 15-DEC-21 | R5679226  |
| Copper (Cu)                                                 | <1.0                 |            | 1.0         | ug/L         |           | 15-DEC-21 | R5679226  |
| Iron (Fe)                                                   | 1020                 |            | 50          | ug/L         |           | 15-DEC-21 | R5679226  |
| Lead (Pb)                                                   | <1.0                 |            | 1.0         | ug/L         |           | 15-DEC-21 | R5679226  |
| Magnesium (Mg)                                              | 29.8                 |            | 0.50        | mg/L         |           | 15-DEC-21 | R5679226  |
|                                                             | 24.6                 |            | 1.0         | ug/L         |           | 15-DEC-21 |           |
| Manganese (Mn)                                              |                      |            | 5.0         | ug/L         |           | 15-DEC-21 |           |
|                                                             | <5.0                 |            |             | _            |           | 15-DEC-21 |           |
| Manganese (Mn)<br>Selenium (Se)                             | <5.0<br>11.5         |            | 0.50        | mg/L         |           |           | 113013220 |
| Manganese (Mn)                                              | <5.0<br>11.5<br><5.0 |            | 0.50<br>5.0 | mg/L<br>ug/L |           | 15-DEC-21 | R5679226  |

 $^{\ast}$  Refer to Referenced Information for Qualifiers (if any) and Methodology.

#### **Reference Information**

| QC Type Description                          |              |               | Parameter                                                                     | Qualifier                                 | Applies to Sample Number(s)                                                                                    |  |  |  |  |  |  |  |
|----------------------------------------------|--------------|---------------|-------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Matrix Spike                                 |              |               | Dissolved Organic Carbon                                                      | MS-B                                      | L2670334-1, -2                                                                                                 |  |  |  |  |  |  |  |
| Matrix Spike                                 |              |               | Barium (Ba)                                                                   | MS-B                                      | L2670334-1, -2                                                                                                 |  |  |  |  |  |  |  |
| Matrix Spike                                 |              |               | Calcium (Ca)                                                                  | MS-B                                      | L2670334-1, -2                                                                                                 |  |  |  |  |  |  |  |
| Matrix Spike                                 |              |               | Copper (Cu)                                                                   | MS-B                                      | L2670334-1, -2                                                                                                 |  |  |  |  |  |  |  |
| Matrix Spike                                 |              |               | Iron (Fe)                                                                     | MS-B                                      | L2670334-1, -2                                                                                                 |  |  |  |  |  |  |  |
| Matrix Spike                                 |              |               | Lead (Pb)                                                                     | MS-B                                      | L2670334-1, -2                                                                                                 |  |  |  |  |  |  |  |
| Matrix Spike                                 |              |               | Magnesium (Mg)                                                                | MS-B                                      | L2670334-1, -2                                                                                                 |  |  |  |  |  |  |  |
| Matrix Spike                                 |              |               | Manganese (Mn)                                                                | MS-B                                      | L2670334-1, -2                                                                                                 |  |  |  |  |  |  |  |
| Matrix Spike                                 |              |               | Sodium (Na)                                                                   | MS-B                                      | L2670334-1, -2                                                                                                 |  |  |  |  |  |  |  |
| Matrix Spike                                 |              |               | Zinc (Zn)                                                                     | MS-B                                      | L2670334-1, -2                                                                                                 |  |  |  |  |  |  |  |
| Matrix Spike                                 |              |               | Phosphorus, Total                                                             | MS-B                                      | L2670334-1, -2                                                                                                 |  |  |  |  |  |  |  |
| Sample Paran                                 | neter Qua    | alifier key   | listed:                                                                       |                                           |                                                                                                                |  |  |  |  |  |  |  |
| Qualifier                                    | Descrip      | otion         |                                                                               |                                           |                                                                                                                |  |  |  |  |  |  |  |
| DLDS                                         | Detectio     | on Limit Rais | sed: Dilution required due to high Diss                                       | olved Solids / Elect                      | rical Conductivity.                                                                                            |  |  |  |  |  |  |  |
| HTC                                          | Hardnes      | ss was calcu  | ulated from Total Ca and/or Mg concer                                         | ntrations and may b                       | e biased high (dissolved Ca/Mg results unavailable).                                                           |  |  |  |  |  |  |  |
| MS-B                                         | Matrix S     | pike recove   | ery could not be accurately calculated                                        | due to high analyte                       | background in sample.                                                                                          |  |  |  |  |  |  |  |
| Fest Method F                                | Reference    | es:           |                                                                               |                                           |                                                                                                                |  |  |  |  |  |  |  |
| ALS Test Code                                | 9            | Matrix        | Test Description                                                              | Method Refer                              | ence**                                                                                                         |  |  |  |  |  |  |  |
| ALK-ONT-DW-\                                 | МТ           | Water         | Alkalinity, Total (as CaCO3)                                                  | EPA 310.2                                 |                                                                                                                |  |  |  |  |  |  |  |
| CL-IC-N-ONT-D                                | W-WT         | Water         | Chloride by IC                                                                | EPA 300.1 (m                              | od)                                                                                                            |  |  |  |  |  |  |  |
| Inorganic anio                               | ons are ana  | alyzed by lo  | n Chromatography with conductivity ar                                         | nd/or UV detection.                       |                                                                                                                |  |  |  |  |  |  |  |
| COLOUR-ONT-                                  | DW-WT        | Water         | Colour, True Drinking Water                                                   | APHA 2120C                                |                                                                                                                |  |  |  |  |  |  |  |
| True Colour is<br>measurement<br>measurement | s can be h   | ighly pH dep  | pendent, and apply to the pH of the sa                                        | n-cobalt standards<br>mple as received (a | using the single wavelength method . Colour at time of testing), without pH adjustment. Concurrent             |  |  |  |  |  |  |  |
| DOC-ONT-DW-                                  | WT           | Water         | Dissolved Organic Carbon                                                      | APHA 5310B                                |                                                                                                                |  |  |  |  |  |  |  |
|                                              | the organ    |               |                                                                               |                                           | is packed with an oxidative catalyst. The water is<br>rted in a carrier gas and is measured by a non-dispersiv |  |  |  |  |  |  |  |
| EC-ONT-DW-W                                  | /Τ           | Water         | Conductivity                                                                  | APHA 2510 B                               |                                                                                                                |  |  |  |  |  |  |  |
| Water sample                                 | es can be n  | neasured di   | rectly by immersing the conductivity ce                                       | ell into the sample.                      |                                                                                                                |  |  |  |  |  |  |  |
| EC-SCREEN-W                                  | /T           | Water         | Conductivity Screen (Internal Use Only)                                       | APHA 2510                                 |                                                                                                                |  |  |  |  |  |  |  |
| Qualitative an                               | alysis of co | onductivity v | vhere required during preparation of ot                                       | her tests - e.g. TDS                      | S, metals, etc.                                                                                                |  |  |  |  |  |  |  |
| HARDNESS-CA                                  | ALC-WT       | Water         | Hardness                                                                      | APHA 2340 B                               |                                                                                                                |  |  |  |  |  |  |  |
|                                              |              |               | dness) is calculated from the sum of C concentrations are preferentially used |                                           | sium concentrations, expressed in CaCO3 equivalents. alculation.                                               |  |  |  |  |  |  |  |
| MET-ONT-DW-                                  |              | Water         | Drinking Water Metals                                                         | EPA 6020A                                 |                                                                                                                |  |  |  |  |  |  |  |
|                                              |              |               |                                                                               |                                           |                                                                                                                |  |  |  |  |  |  |  |
|                                              | _            |               |                                                                               |                                           |                                                                                                                |  |  |  |  |  |  |  |

NO2-DW-IC-WT Water Nitrite in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

NO3-DW-IC-WT Water Nitrate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.

P-T-COL-DW-WT Water Total P in Water by Colour APHA 4500-P PHOSPHORUS

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.

PH-ONT-DW-WT

Water pН APHA 4500 H-Electrode

#### **Reference Information**

Water samples are analyzed directly by a calibrated pH meter.

Analysis conducted in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for samples under this regulation is 28 days SO4-IC-N-ONT-DW-WT Water Sulfate in Water by IC EPA 300.1 (mod) Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection. SOLIDS-TDS-ONT-DW-Water **Total Dissolved Solids APHA 2540C** W/T This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. TC,EC-QT51-DW-WT Total Coliform and E. Coli APHA 9223B Water This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The sample is mixed with a mixture of hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is obtained by comparing the positive responses to a probability table. TURB-MET-WT Water Turbidity on preserved metals APHA 2130 B sample Sample result is based on a comparison of the intensity of the light scattered by the sample under defined conditions with the intensity of light scattered by a standard reference suspension under the same conditions. Sample readings are obtained from a Nephelometer. TURBIDITY-ONT-DW-WT Water Turbidity APHA 2130 B Sample result is based on a comparison of the intensity of the light scattered by the sample under defined conditions with the intensity of light scattered by a standard reference suspension under the same conditions. Sample readings are obtained from a Nephelometer. \*\* ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

| Laboratory Definition Code | Laboratory Location                           |
|----------------------------|-----------------------------------------------|
| WT                         | ALS ENVIRONMENTAL - WATERLOO, ONTARIO, CANADA |
|                            |                                               |

#### Chain of Custody Numbers:

#### **GLOSSARY OF REPORT TERMS**

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid weight of sample

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.



|                             |                     |           | -         | .,        |                 |         |        |            |
|-----------------------------|---------------------|-----------|-----------|-----------|-----------------|---------|--------|------------|
|                             |                     | Workorder | : L267033 | 4         | Report Date: 15 | -DEC-21 | Pa     | age 1 of 5 |
| Client:                     | TERRAPROBE-BRAM     | PTON      |           |           |                 |         |        |            |
|                             | 11 Indell Lane      |           |           |           |                 |         |        |            |
|                             | Brampton ON L6T 3Y  | 3         |           |           |                 |         |        |            |
| Contact:                    | Paul Raepple        |           |           |           |                 |         |        |            |
| Test                        | Matrix              | Reference | Result    | Qualifier | Units           | RPD     | Limit  | Analyzed   |
| ALK-ONT-DW-W                | T Water             |           |           |           |                 |         |        |            |
| Batch F                     | 85672476            |           |           |           |                 |         |        |            |
| WG3671936-2                 |                     |           |           |           |                 |         |        |            |
| Alkalinity, Tota            |                     |           | 104.1     |           | %               |         | 85-115 | 08-DEC-21  |
| WG3671936-1                 |                     |           |           |           |                 |         |        |            |
| Alkalinity, Tota            | al (as CaCO3)       |           | <20       |           | mg/L            |         | 20     | 08-DEC-21  |
| CL-IC-N-ONT-DW              | /-WT Water          |           |           |           |                 |         |        |            |
| Batch F                     | \$\$674534          |           |           |           |                 |         |        |            |
| WG3672688-7                 | LCS                 |           |           |           |                 |         |        |            |
| Chloride (Cl)               |                     |           | 99.96     |           | %               |         | 70-130 | 09-DEC-21  |
| WG3672688-6                 | MB                  |           | 0.50      |           |                 |         |        |            |
| Chloride (Cl)               |                     |           | <0.50     |           | mg/L            |         | 0.5    | 09-DEC-21  |
| COLOUR-ONT-D                | W-WT Water          |           |           |           |                 |         |        |            |
| Batch F                     | 85670885            |           |           |           |                 |         |        |            |
| WG3671945-2                 | LCS                 |           |           |           |                 |         |        |            |
| Color, True                 |                     |           | 102.7     |           | %               |         | 70-130 | 08-DEC-21  |
| WG3671945-1                 | МВ                  |           |           |           |                 |         |        |            |
| Color, True                 |                     |           | <2.0      |           | T.C.U.          |         | 2      | 08-DEC-21  |
| DOC-ONT-DW-W                | T Water             |           |           |           |                 |         |        |            |
| Batch F                     | 85674156            |           |           |           |                 |         |        |            |
| WG3672107-2                 |                     |           | 404 5     |           | 0/              |         |        |            |
| Dissolved Org               |                     |           | 101.5     |           | %               |         | 80-120 | 09-DEC-21  |
| WG3672107-1                 |                     |           | -0.50     |           | ~~~~/l          |         | 0.5    |            |
| Dissolved Org               | Janic Carbon        |           | <0.50     |           | mg/L            |         | 0.5    | 09-DEC-21  |
| EC-ONT-DW-WT                | Water               |           |           |           |                 |         |        |            |
|                             | 85672476            |           |           |           |                 |         |        |            |
| WG3671936-2                 | LCS                 |           | 404.0     |           | 0/              |         |        |            |
| Conductivity                |                     |           | 101.3     |           | %               |         | 70-130 | 08-DEC-21  |
| WG3671936-1<br>Conductivity | MB                  |           | <6.0      |           | umhos/cm        |         | 6      |            |
| -                           | <b>-</b> W/s6ss     |           | <0.0      |           | unnos/cm        |         | 0      | 08-DEC-21  |
| MET-ONT-DW-W<br>Batch F     | T Water<br>85679226 |           |           |           |                 |         |        |            |
| WG3675136-2                 |                     |           |           |           |                 |         |        |            |
| Aluminum (Al)               |                     |           | 101.9     |           | %               |         | 70-130 | 15-DEC-21  |
| Antimony (Sb)               | )                   |           | 101.4     |           | %               |         | 70-130 | 15-DEC-21  |
| Arsenic (As)                |                     |           | 102.4     |           | %               |         | 70-130 | 15-DEC-21  |
| Barium (Ba)                 |                     |           | 101.1     |           | %               |         | 70-130 | 15-DEC-21  |
| Cadmium (Cd                 | )                   |           | 103.0     |           | %               |         | 70-130 | 15-DEC-21  |
| Calcium (Ca)                |                     |           | 95.1      |           | %               |         | 70-130 | 15-DEC-21  |
|                             |                     |           | 00.1      |           | 70              |         | 10-130 | 10-020-21  |



|                                   |        | Workorder: | L267033 | 4         | Report Date: 15 | 5-DEC-21 | Pa     | ige 2 of  |
|-----------------------------------|--------|------------|---------|-----------|-----------------|----------|--------|-----------|
| est                               | Matrix | Reference  | Result  | Qualifier | Units           | RPD      | Limit  | Analyzed  |
| MET-ONT-DW-WT                     | Water  |            |         |           |                 |          |        |           |
| Batch R5679226                    | i      |            |         |           |                 |          |        |           |
| WG3675136-2 LCS<br>Chromium (Cr)  |        |            | 100.9   |           | %               |          | 70-130 | 15-DEC-21 |
| Copper (Cu)                       |        |            | 100.6   |           | %               |          | 70-130 | 15-DEC-21 |
| Iron (Fe)                         |        |            | 103.0   |           | %               |          | 70-130 | 15-DEC-21 |
| Lead (Pb)                         |        |            | 103.5   |           | %               |          | 70-130 | 15-DEC-21 |
| Magnesium (Mg)                    |        |            | 102.4   |           | %               |          | 70-130 | 15-DEC-21 |
| Manganese (Mn)                    |        |            | 101.3   |           | %               |          | 70-130 | 15-DEC-21 |
| Selenium (Se)                     |        |            | 102.7   |           | %               |          | 70-130 | 15-DEC-21 |
| Sodium (Na)                       |        |            | 104.1   |           | %               |          | 70-130 | 15-DEC-21 |
| Uranium (U)                       |        |            | 106.8   |           | %               |          | 70-130 | 15-DEC-21 |
| Zinc (Zn)                         |        |            | 100.4   |           | %               |          | 70-130 | 15-DEC-21 |
| WG3675136-1 MB<br>Aluminum (Al)   |        |            | <10     |           | ug/L            |          | 10     | 15-DEC-21 |
| Antimony (Sb)                     |        |            | <0.60   |           | ug/L            |          | 0.6    | 15-DEC-21 |
| Arsenic (As)                      |        |            | <1.0    |           | ug/L            |          | 1      | 15-DEC-21 |
| Barium (Ba)                       |        |            | <10     |           | ug/L            |          | 10     | 15-DEC-21 |
| Cadmium (Cd)                      |        |            | <0.10   |           | ug/L            |          | 0.1    | 15-DEC-21 |
| Calcium (Ca)                      |        |            | <0.50   |           | mg/L            |          | 0.5    | 15-DEC-21 |
| Chromium (Cr)                     |        |            | <1.0    |           | ug/L            |          | 1      | 15-DEC-21 |
| Copper (Cu)                       |        |            | <1.0    |           | ug/L            |          | 1      | 15-DEC-21 |
| Iron (Fe)                         |        |            | <50     |           | ug/L            |          | 50     | 15-DEC-21 |
| Lead (Pb)                         |        |            | <1.0    |           | ug/L            |          | 1      | 15-DEC-21 |
| Magnesium (Mg)                    |        |            | <0.50   |           | mg/L            |          | 0.5    | 15-DEC-21 |
| Manganese (Mn)                    |        |            | <1.0    |           | ug/L            |          | 1      | 15-DEC-21 |
| Selenium (Se)                     |        |            | <1.0    |           | ug/L            |          | 1      | 15-DEC-21 |
| Sodium (Na)                       |        |            | <0.50   |           | mg/L            |          | 0.5    | 15-DEC-21 |
| Uranium (U)                       |        |            | <2.0    |           | ug/L            |          | 2      | 15-DEC-21 |
| Zinc (Zn)                         |        |            | <3.0    |           | ug/L            |          | 3      | 15-DEC-21 |
| NO2-DW-IC-WT                      | Water  |            |         |           |                 |          |        |           |
| Batch R5674534                    |        |            |         |           |                 |          |        |           |
| WG3672688-7 LCS<br>Nitrite (as N) |        |            | 99.9    |           | %               |          | 90-110 | 09-DEC-21 |
| WG3672688-6 MB<br>Nitrite (as N)  |        |            | <0.010  |           | mg/L            |          | 0.01   | 09-DEC-21 |
| NO3-DW-IC-WT                      | Water  |            |         |           |                 |          |        |           |



|                                                                                              |        |                           |         | -         | -               |         |         |            |
|----------------------------------------------------------------------------------------------|--------|---------------------------|---------|-----------|-----------------|---------|---------|------------|
|                                                                                              |        | Workorder:                | L267033 | 4         | Report Date: 15 | -DEC-21 | Pa      | ige 3 of 5 |
| Test                                                                                         | Matrix | Reference                 | Result  | Qualifier | Units           | RPD     | Limit   | Analyzed   |
| NO3-DW-IC-WT                                                                                 | Water  |                           |         |           |                 |         |         |            |
| Batch R5674534                                                                               |        |                           |         |           |                 |         |         |            |
| WG3672688-7 LCS<br>Nitrate (as N)                                                            |        |                           | 99.6    |           | %               |         | 90-110  | 09-DEC-21  |
| WG3672688-6 MB<br>Nitrate (as N)                                                             |        |                           | <0.020  |           | mg/L            |         | 0.02    | 09-DEC-21  |
| P-T-COL-DW-WT                                                                                | Water  |                           |         |           |                 |         |         |            |
| Batch R5672489                                                                               |        |                           |         |           |                 |         |         |            |
| WG3671910-2 LCS<br>Phosphorus, Total                                                         |        |                           | 101.0   |           | %               |         | 80-120  | 09-DEC-21  |
| WG3671910-1 MB                                                                               |        |                           |         |           |                 |         |         |            |
| Phosphorus, Total                                                                            |        |                           | <0.0030 |           | mg/L            |         | 0.003   | 09-DEC-21  |
| PH-ONT-DW-WT                                                                                 | Water  |                           |         |           |                 |         |         |            |
| Batch R5672476                                                                               |        |                           |         |           |                 |         |         |            |
| <b>WG3671936-2 LCS</b><br>рН                                                                 |        |                           | 7.03    |           | pH units        |         | 6.9-7.1 | 08-DEC-21  |
| SO4-IC-N-ONT-DW-WT                                                                           | Water  |                           |         |           |                 |         |         |            |
| Batch         R5674534           WG3672688-7         LCS           Sulfate (SO4)         LCS |        |                           | 101.2   |           | %               |         | 90-110  | 09-DEC-21  |
| WG3672688-6 MB                                                                               |        |                           | 10112   |           | 70              |         | 30-110  | 09-020-21  |
| Sulfate (SO4)                                                                                |        |                           | <0.30   |           | mg/L            |         | 0.3     | 09-DEC-21  |
| SOLIDS-TDS-ONT-DW-WT                                                                         | Water  |                           |         |           |                 |         |         |            |
| Batch R5677236                                                                               |        |                           |         |           |                 |         |         |            |
| WG3673552-2 LCS<br>Total Dissolved Solids                                                    |        |                           | 93.9    |           | %               |         | 70-130  | 11-DEC-21  |
| WG3673552-1 MB<br>Total Dissolved Solids                                                     |        |                           | <10     |           | mg/L            |         | 10      | 11-DEC-21  |
| IC,EC-QT51-DW-WT                                                                             | Water  |                           |         |           |                 |         |         |            |
| Batch R5674911                                                                               |        |                           |         |           |                 |         |         |            |
| WG3672350-1 MB<br>Total Coliforms                                                            |        |                           | 0       |           | MPN/100mL       |         | 1       | 09-DEC-21  |
| Escherichia Coli                                                                             |        |                           | 0       |           | MPN/100mL       |         | 1       | 09-DEC-21  |
|                                                                                              | Water  |                           | Ŭ       |           |                 |         | ı       | 00-020-21  |
|                                                                                              | Waldi  |                           |         |           |                 |         |         |            |
| Batch R5675752<br>WG3672778-3 DUP                                                            |        | 1 2670224 4               |         |           |                 |         |         |            |
| Turbidity                                                                                    |        | <b>L2670334-1</b><br>9.34 | 9.48    |           | NTU             | 1.5     | 15      | 09-DEC-21  |
| WG3672778-2 LCS                                                                              |        |                           |         |           |                 |         |         |            |



|                              |            | Workorder: | L267033            | 4 | Report Date: 1 | 5-DEC-21 | Pa     | ge 4 of 5 |
|------------------------------|------------|------------|--------------------|---|----------------|----------|--------|-----------|
| Test                         | Matrix Ret |            | Result Qualifier U |   | Units          | RPD      | Limit  | Analyzed  |
| TURBIDITY-ONT-DW-WT          | Water      |            |                    |   |                |          |        |           |
| Batch R5675752               |            |            |                    |   |                |          |        |           |
| WG3672778-2 LCS<br>Turbidity |            |            | 101.0              |   | %              |          | 85-115 | 09-DEC-21 |
| WG3672778-1 MB<br>Turbidity  |            |            | <0.10              |   | NTU            |          | 0.1    | 09-DEC-21 |

# Quality Control Report Workorder: L2670334 Report Date: 15-DEC-21

Workorder: L2670334

Report Date: 15-DEC-21

#### Legend:

| Limit | ALS Control Limit (Data Quality Objectives) |
|-------|---------------------------------------------|
| DUP   | Duplicate                                   |
| RPD   | Relative Percent Difference                 |
| N/A   | Not Available                               |
| LCS   | Laboratory Control Sample                   |
| SRM   | Standard Reference Material                 |
| MS    | Matrix Spike                                |
| MSD   | Matrix Spike Duplicate                      |
| ADE   | Average Desorption Efficiency               |
| MB    | Method Blank                                |
| IRM   | Internal Reference Material                 |
| CRM   | Certified Reference Material                |
| CCV   | Continuing Calibration Verification         |
| CVS   | Calibration Verification Standard           |
| LCSD  | Laboratory Control Sample Duplicate         |
|       |                                             |

#### Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.





est Form

COC Number: 20 -

Page 1 of 2

| Report To       | Contact and company name below will appe                                                          | ar on the final report                 |                                                   | Reports / R             | ecipients             |                  | Turnaround Time (TAT) Requested |                                                                                                                            |                                                                                                                                      |                     |                   |                               |                              |                            |                                    |                           |                                 |                                 |                   |                                    |         |            |                  |                              |
|-----------------|---------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|-------------------------|-----------------------|------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------|-------------------------------|------------------------------|----------------------------|------------------------------------|---------------------------|---------------------------------|---------------------------------|-------------------|------------------------------------|---------|------------|------------------|------------------------------|
| Company:        | TERRAPROBE-BRAMPTON                                                                               |                                        | Select Report Fo                                  | ormat: 🖓 PDF [          |                       | O (DIGITAL)      | Rout                            | ine [R] i                                                                                                                  | receive                                                                                                                              | ed by 3             | pm M-f            | - no                          | surcha                       | rges ap                    | oply                               |                           |                                 |                                 |                   |                                    |         |            |                  |                              |
| Contact:        | Paul Raepple                                                                                      |                                        | Merge QC/QCI                                      | Reports with COA        | YES NO                | N/A              | f4 da                           | ıy (P4) if                                                                                                                 | receive                                                                                                                              | d by 3p             | m M-F             | - 20%                         | 6 rush s                     | surchar                    | rge min                            | imum                      |                                 |                                 |                   |                                    |         |            |                  |                              |
| Phone:          | 905-796-2650                                                                                      |                                        | Compare Results                                   | to Criteria on Report - | provide details belov | v if box checked |                                 | B day [P3] if received by 3pm M-F - 25% rush surcharge minimum                                                             |                                                                                                                                      |                     |                   |                               |                              |                            |                                    |                           |                                 | AFF                             | IX ALS            | GBARC<br>(ALSι                     |         |            | HER              | E                            |
|                 | Company address below will appear on the fina                                                     | l report                               | Select Distribution                               | on: 🔽 Email             | MAIL F                | AX               |                                 | ay [P2] if received by 3pm M-F - 50% rush surcharge minimum<br>ay [E] if received by 3pm M-F - 100% rush surcharge minimum |                                                                                                                                      |                     |                   |                               |                              |                            |                                    |                           |                                 | ()                              |                   |                                    |         |            |                  |                              |
| Street:         | 11 Indeli Lane                                                                                    |                                        | Email 1 or Fax                                    | praepple@terrapro       | be.ca                 |                  | Same                            | e day [E                                                                                                                   | ay [E2] if received by 10am M-S - 200% rush surcharge. Addition<br>y apply to rush requests on weekends, statutory holidays and non- |                     |                   |                               |                              |                            |                                    |                           | ditiona<br>non-                 | 4                               |                   |                                    |         |            |                  |                              |
| City/Province:  | Brampton, ON                                                                                      |                                        | Email 2                                           |                         |                       |                  |                                 | ne tests                                                                                                                   |                                                                                                                                      |                     |                   |                               |                              |                            |                                    |                           |                                 |                                 |                   |                                    |         |            |                  |                              |
| Postal Code:    | L6T 3Y3                                                                                           |                                        | Email 3                                           |                         |                       | · <u></u>        | с - С                           | Date and                                                                                                                   | Time F                                                                                                                               | Require             | ed for a          | I E&P                         | TATs:                        |                            |                                    |                           | dd-                             | d-mmm-yy hh:mm am/pm            |                   |                                    |         |            |                  |                              |
| Invoice To      | Same as Report To                                                                                 | NO                                     |                                                   | Invoice Re              | cipients              |                  |                                 |                                                                                                                            |                                                                                                                                      | For all             | tests wi          | th rush                       | TATs r                       | equeste                    | ed, plea                           | se cont                   | act you                         | our AM to confirm availability. |                   |                                    |         |            |                  |                              |
|                 | Copy of Invoice with Report VES                                                                   | NO                                     | Select Invoice Distribution: 🗹 EMAIL 🗌 MAIL 📋 FAX |                         |                       |                  |                                 |                                                                                                                            | Analysis Request<br>Indicate Fittered (F), Preserved (P) or Filtered and Pres                                                        |                     |                   |                               |                              |                            |                                    |                           |                                 |                                 |                   |                                    |         |            |                  |                              |
| Company:        |                                                                                                   |                                        | Email 1 or Fax praepple@terraprobe.ca             |                         |                       |                  |                                 |                                                                                                                            | Inc                                                                                                                                  | ticate F            | iltered (         | F), 🤄                         | eserveo                      | t (Ĥ) or                   | r Filtere                          | d and I                   | Preserv                         | red (F/F                        | ) below           | ·                                  |         | 1          | 3                | es)                          |
| Contact:        |                                                                                                   |                                        |                                                   | Irossi@terraprobe.      |                       |                  | Ψ                               |                                                                                                                            |                                                                                                                                      |                     |                   |                               |                              |                            |                                    |                           |                                 |                                 | $ \rightarrow $   |                                    |         | 1          | Ĕ                | not                          |
|                 | Project Information                                                                               |                                        | Oil                                               | and Gas Required        | Fields (client        | use)             | CONTAINERS                      |                                                                                                                            |                                                                                                                                      |                     |                   | εl                            | -                            |                            | c                                  |                           | ξ                               | <u>د</u> ا                      |                   | RE                                 |         | 5 I 3      | ž                | 66 1                         |
| ALS Account     | # / Quote #: Q71850 (2021 SOA                                                                     | )                                      | AFE/Cost Center:                                  |                         | PO#                   |                  | E                               | Ê                                                                                                                          |                                                                                                                                      |                     |                   | \$                            | ۶I                           |                            | M-0                                | Ę                         | Š                               | 3                               |                   | 5                                  |         |            | ž                | š)                           |
| Job #:          | 1-21-0692-54                                                                                      |                                        | Major/Minor Code: Routing Code:                   |                         |                       |                  |                                 |                                                                                                                            | ₹                                                                                                                                    | F                   | 1                 | ρ́                            | Å                            | 5                          | 1-70                               | 1-70                      | -Ľ                              | à                               |                   | 7-M0                               |         | έļ         | SIORAGE REQUIRED | R                            |
| PO / AFE:       |                                                                                                   |                                        | itequisitorier.                                   |                         |                       |                  |                                 |                                                                                                                            | 5                                                                                                                                    | >-                  | F                 | ö                             | Ť.                           | Å                          | NT-I                               | 1-d                       | 2                               | No                              | E                 | L L                                |         | z   ĝ      | <u> </u>         | AZ/                          |
| LSD:            |                                                                                                   |                                        | Location:                                         |                         |                       |                  | Ь                               | QT5                                                                                                                        | 4                                                                                                                                    | à                   | <u>}</u>          | ż                             | o-z                          | Ľ.                         | 0-67                               | R-AI                      | Ē                               | Sa                              | \$                | Р<br>Н                             |         |            | 5                | Ť                            |
| ALS Lab Wor     | rk Order # (ALS use only):                                                                        | 0334 1                                 | ALS Contact:                                      | Emily Smith             | Sampler: 🦸            | Fuepple.         | NUMBER                          | гс, ес (тс,ес-ат51-рw-мт)                                                                                                  | HARDNESS-DW-CALC-WT                                                                                                                  | DOC (DOC-ONT-DW-WT) | pH (PH-ONT-DW-WT) | Sulphate (SO4-IC-N-ONT-DW-WT) | Chloride (CL-IC-N-ONT-DW-WT) | Alkalinity (ALK-ONT-DW-WT) | Nitrate/Nitrite (N2N3-ONT-DW-P-WT) | Colour (COLOUR-APP-DW-WT) | Turbidity (TURBIDITY-ONT-DW-WT) | TDS (SOLIDS-TDS-ONT-DW-WT)      | EC (EC-ONT-DW-WT) | Select Metals (MET-ONT-DW-WT + REF |         |            | EXIENDED         | SUSPECTED HAZARD (see notes) |
| ALS Sample #    | Sample Identification                                                                             | and/or Coordinates                     |                                                   | Date                    | Time                  | 1                | Ξ                               | EC (                                                                                                                       | NON                                                                                                                                  | <u>ē</u>            | H                 | ohate                         | oride                        | tinit                      | ate/N                              | our (                     | bidity                          | s (sc                           | <u> </u>          | oct M                              |         |            | Ē                | ISPI                         |
| (ALS use only)  |                                                                                                   | ppear on the report)                   |                                                   | (dd-mmm-yy)             | (hh:mm)               | Sample Type      | Ĭ                               | 2                                                                                                                          | HAF                                                                                                                                  | ğ                   | Hd                | Что<br>S                      | Ü                            | Alka                       | Nitra                              | Co                        | Tur                             | ΤΩ                              | ВС                | Sele                               | Ì       | <u>ה</u> ה | ШĽ               | วร                           |
|                 | PWI SUL                                                                                           |                                        |                                                   | Dec 7/21                | 12:00                 | Water            | 5                               |                                                                                                                            | /                                                                                                                                    |                     | Λ                 |                               |                              | 1                          | 1                                  | ~                         | ~                               | ~                               |                   | V                                  |         |            |                  |                              |
|                 | Puil 5:2                                                                                          |                                        |                                                   | Va7/21                  | 15:00                 | Water            | 5                               | 1                                                                                                                          | 1                                                                                                                                    | ~                   | イ                 | ブ                             |                              | ~                          |                                    | 1                         | ~                               | 6                               | 1                 |                                    |         |            |                  |                              |
| L               | 1                                                                                                 |                                        |                                                   | Teoriet                 |                       | Water            | <b>†</b>                        |                                                                                                                            |                                                                                                                                      |                     |                   |                               |                              |                            |                                    |                           |                                 |                                 |                   |                                    |         |            |                  |                              |
|                 |                                                                                                   |                                        |                                                   |                         |                       | Water            |                                 |                                                                                                                            | -+                                                                                                                                   | -+                  |                   |                               | -                            |                            |                                    |                           |                                 |                                 |                   |                                    |         |            |                  |                              |
|                 |                                                                                                   |                                        |                                                   |                         |                       | Water            | ┼                               |                                                                                                                            | -+                                                                                                                                   | -+                  |                   |                               |                              |                            |                                    |                           |                                 |                                 |                   |                                    |         | +          |                  |                              |
|                 | · · · · · · · · · · · · · · · · · · ·                                                             |                                        |                                                   |                         |                       | Water            |                                 |                                                                                                                            |                                                                                                                                      |                     | +                 | -+                            |                              |                            |                                    |                           |                                 |                                 |                   |                                    | +       |            | +                |                              |
|                 |                                                                                                   |                                        |                                                   |                         |                       | Water            | -                               |                                                                                                                            |                                                                                                                                      |                     |                   |                               |                              |                            |                                    |                           |                                 |                                 |                   |                                    |         |            |                  |                              |
|                 |                                                                                                   |                                        |                                                   |                         |                       | Water            | +                               | 1                                                                                                                          |                                                                                                                                      |                     | - †               |                               |                              | -                          |                                    |                           |                                 |                                 |                   |                                    |         |            |                  |                              |
|                 |                                                                                                   |                                        |                                                   |                         |                       | Water            |                                 |                                                                                                                            |                                                                                                                                      |                     |                   |                               |                              |                            |                                    |                           |                                 |                                 |                   |                                    |         |            |                  |                              |
|                 |                                                                                                   |                                        |                                                   |                         |                       | Water            |                                 |                                                                                                                            |                                                                                                                                      | _                   |                   |                               |                              |                            |                                    |                           |                                 |                                 |                   |                                    |         |            |                  |                              |
|                 |                                                                                                   | ······································ |                                                   |                         |                       | Water            |                                 |                                                                                                                            |                                                                                                                                      |                     |                   |                               | -                            |                            |                                    |                           |                                 |                                 |                   |                                    |         |            |                  |                              |
|                 |                                                                                                   |                                        |                                                   |                         |                       | Water            |                                 |                                                                                                                            |                                                                                                                                      |                     |                   |                               |                              |                            |                                    |                           |                                 |                                 | 1                 |                                    |         |            |                  |                              |
|                 |                                                                                                   | Notes / Specify I                      | Limits for result e                               | valuation by selecti    | ng from drop-dov      | wn below         | † T                             | ·                                                                                                                          |                                                                                                                                      |                     | S                 | AMP                           | LE RI                        | ECEI                       | PTDE                               | TAIL                      | S (AL                           | S use                           | only)             |                                    | /       |            |                  |                              |
| Drinking        | g Water (DW) Samples <sup>1</sup> (client use)                                                    | , ,                                    |                                                   | ccel COC only)          |                       |                  | Cool                            | ing Me                                                                                                                     | thod:                                                                                                                                |                     | NONE              |                               | ICE                          | R                          | E PACK                             | :s [                      | ] FRO                           | ZEN                             | Į.                |                                    | LING IN | ITTATE     | Ð                |                              |
| Are samples tal | ken from a Regulated DW System?                                                                   |                                        |                                                   |                         |                       |                  | Subr                            | mission                                                                                                                    | Com                                                                                                                                  | ments               | ident             | fied o                        | on Sa                        | mple                       | Rece                               | ipt No                    | tificat                         | ion:                            |                   | ES                                 | []NO    |            |                  | _                            |
| ΠY              | YES 📝 NO<br>Select Metals List: Na, P, Al, Sb, As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Se, U, Zn, Ca & Mg |                                        |                                                   |                         |                       |                  | Coo                             | ler Cus                                                                                                                    | tody S                                                                                                                               | Seals I             | ntact:            |                               | ]/ES                         |                            | /A                                 | Sam                       |                                 |                                 | Seals             |                                    |         |            |                  | Â                            |
| Are samples for | human consumption/ use?                                                                           |                                        |                                                   |                         |                       | , ∠n, ∪a & Mg    |                                 | IN                                                                                                                         | ITIAL C                                                                                                                              | OOLE                | R TEM             | ERAT                          | URES                         | °C                         |                                    |                           | F                               | INAL C                          | COOLER            |                                    | ERATU   | RES °C     |                  |                              |
| Πr              | ES 📝 NO                                                                                           | Metals wifilt                          | cred Awaly                                        | sis to: Total we        | tels as is.           |                  | 2                               | Ð                                                                                                                          |                                                                                                                                      |                     |                   |                               |                              |                            |                                    |                           |                                 |                                 | 1                 |                                    |         |            |                  |                              |
| · · · · · ·     | SHIPMENT RELEASE (client use)                                                                     |                                        | [1                                                | NIT AL SHIPMENT         | RECEPTION (           | ALS use only)    |                                 | ×                                                                                                                          |                                                                                                                                      |                     |                   | FI                            | NAL                          | SHIP                       | ****                               |                           | EPTI                            | ON (A                           | LS us             | e only                             | ·····   |            |                  |                              |
|                 |                                                                                                   |                                        |                                                   |                         |                       | Time             | ٥٢                              | Rece                                                                                                                       | ived t                                                                                                                               | by:                 |                   |                               |                              | Date                       | e:                                 |                           |                                 |                                 |                   | T                                  | ime:    |            |                  |                              |
|                 |                                                                                                   |                                        |                                                   |                         |                       | <u> </u>         | 11.40                           |                                                                                                                            |                                                                                                                                      |                     | _                 |                               |                              |                            |                                    |                           |                                 |                                 |                   |                                    |         |            |                  | _                            |

REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.