

December 3, 2019 MTE File No.: 45013-300

Mr. Guy Riopeele 10919 Longwoods Road Inc. 10919 Longwoods Road Middlesex Centre, Ontario

Dear Mr. Riopeele:

RE: Results of Groundwater Sampling and Nitrate Loading Assessment, 10919 Longwoods Road, Proposed Industrial Subdivision

MTE Consultants Inc. (MTE) was retained by 10919 Longwoods Road Inc. to conduct a groundwater sampling program and nitrate loading assessment for a proposed industrial subdivision to be located at 10919 Longwoods Road, Municipality of Middlesex Centre, Ontario ("the Site"). The approximate location of the Site is shown on Figure 1 (attached).

It is our understanding that the proposed industrial subdivision will be developed on approximately 6.65 hectares (ha) of agricultural lands and will include a private roadway, up to eighteen industrial lots and an on-site stormwater management facility. Each proposed lot will be connected to a piped municipal water supply but will be serviced with individual wastewater treatment facilities (septic beds). These wastewater systems are intended for domestic waste disposal only and no commercial/industrial cooling or process wastewater will be directed to these systems. A preliminary site plan concept is shown on Figure 2 (attached).

The purpose of this groundwater sampling program and nitrate loading assessment is to support the site plan design and approval process.

Scope of Work

Our scope of work included the following:

- Collection of groundwater samples from the six on-site monitoring wells;
- Submission of six groundwater samples to an accredited laboratory for analysis of Nitrite-N, Nitrate-N, Ammonia-N, and Total Kjeldahl Nitrogen (TKN);
- Comparison of laboratory results to applicable criteria (Ontario Regulation 169/03 Ontario Drinking Water Quality Standards, Safe Drinking Water Act 2002);
- Completion of a Nitrate Loading Assessment; and
- Data assessment and reporting.

Field Sampling and Observations

On September 13, 2019, and October 4, 2019, MTE collected groundwater samples from the six monitoring wells installed on March 20, 2019 as part of a Geotechnical Investigation (MW101-19, MW102-19, MW103-19, MW104-19, MW105-19, and MW106-19). Refer to Figure 2 for

monitoring well locations. Prior to sample collection, the monitoring wells were purged a minimum of three standing well volumes or until 'dry'. Samples were collected using dedicated Waterra[™] inertial pumps; placed into laboratory supplied jars and submitted under chain of custody procedures, in ice packed coolers, to AGAT Laboratories for analysis of Nitrite-N, Nitrate-N, Ammonia-N, and TKN.

The sampling program was conducted in general accordance with the Ministry of Environment, Conservation and Parks (MECP¹) document *"Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario,"* dated December 1996. All chemical analyses were performed by an accredited analytical laboratory in accordance with the document *"Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act,"* dated July 1, 2011, as amended.

Analytical Results

The analytical results are summarized in Table 1 (attached), which includes a comparison to the Ontario Regulation 169/03 Ontario Drinking Water Quality Standards (ODWQS). Copies of the Certificates of Analysis received from the analytical laboratory are also attached.

Based on the analytical results for the samples collected on September 13, 2019, there was an exceedance of the corresponding ODWQS for Nitrate-N at MW104-19. No other samples collected during this event exceeded the corresponding ODWQS for the parameters analyzed.

In response, MTE collected additional groundwater samples from all six wells on October 4, 2019 to confirm the initial results and assess temporal variability of the groundwater quality. The analytical results for these samples were similar, with a repeated exceedance of the corresponding ODWQS for Nitrate-N at MW104-19. Similar to the previous sample event results, no other samples collected during this event exceeded the corresponding ODWQS for the parameters analyzed.

These analytical results are typical for agricultural properties where chemical fertilizers and/or biosolids are routinely applied. As a result, the nitrate concentration observed in the groundwater sample collected from MW104-19 should decline following the proposed change in land use from agricultural to commercial/industrial.

Nitrate Loading Assessment

To support the site plan design, three scenarios were compared to assess the potential nitrate loading of the proposed industrial subdivision. Details of each scenario are described below.

Scenario 1

- A conventional, anaerobic septic system will be installed on each of the 18 lots;
- Total daily design sanitary sewage flow is 75 litres (L) per employee per 8 hour shift (in general accordance with Section 8.2.1.3 of the Ontario Building Code)²;

¹ It is noted that the Ontario Ministry of the Environment, Conservation and Parks (MECP) was previously named the Ontario Ministry of the Environment (MOE) and the Ontario Ministry of the Environment and Climate Change (MOECC). For ease of discussion in this document, "MECP" is used to represent this provincial ministry and is inclusive of MOE and MOECC.

² <u>https://www.buildingcode.online</u> accessed November 2019.

MTE Consultants | 45013-300 | Results of Groundwater Sampling and Nitrate Loading Assessment

- Each industrial lot will require wastewater servicing to support up to six employees with one 8 hour shift per day, or equivalent;
- The nitrate concentration in the sewage effluent following conventional treatment will be 40 milligrams per litre (mg/L);
- The development will have no more than 75% impervious surface, or achieve equivalent infiltration using appropriately designed low impact development strategies (LIDs);
- A groundwater recharge rate of 0.25 m/year (in accordance with Section 22.2.8 of the MECP¹ document *Design Guidelines for Sewage Works* (2008); and
- A background nitrate concentration of 1 mg/L was assumed for the infiltration.

Scenario 2

- A conventional, anaerobic septic system will be installed on each of the 13 lots (i.e., a five lot reduction);
- Total daily design sanitary sewage flow is 75 L per employee per 8 hour shift;
- Each industrial lot will require wastewater servicing to support up to six employees with one 8 hour shift per day, or equivalent;
- The nitrate concentration in the sewage effluent following conventional treatment will be 40 mg/L;
- The development will have no more than 50% impervious surface, or achieve equivalent infiltration using appropriately designed LIDs;
- A groundwater recharge rate of 0.25 m/year; and
- A background nitrate concentration of 1 mg/L was assumed for the infiltration.

Scenario 3

- A tertiary treatment system will be installed on each of the 18 lots;
- Total daily design sanitary sewage flow is 75 L per employee per 8 hour shift;
- Each industrial lot will require wastewater servicing to support up to six employees with one 8 hour shift per day, or equivalent;
- The nitrate concentration in the sewage effluent following tertiary treatment will be 20 mg/L;
- The development will have no more than 75% impervious surface, or achieve equivalent infiltration using appropriately designed LIDs;
- A groundwater recharge rate of 0.25 m/year; and
- A background nitrate concentration of 1 mg/L was assumed for the infiltration.

Using the above, the nitrate loading assessment was performed using the following formula:

$$C_{B} = \frac{SEF \times C_{SEF} + RWI \times C_{RWI}}{SEF + RWI}$$

Where:

- C_B = Nitrate concentration at the down-gradient site boundary (mg/L as N)
- SEF = Sewage Effluent Flow (L/yr)
- C_{SEF} = Nitrate Concentration of sewage effluent (mg/L as N)
- RWI = Recharge Water Infiltration (L/yr)
- C_{RWI} = Nitrate concentration of infiltration water (mg/L as N)

Parameter	Units	Scenario 1	Scenario 2	Scenario 3
SEF	L/yr	2,956,500	2,135,250	2,956,500
CSEF	mg/L as N	40	40	20
RWI	L/yr	4,156,250	8,312,500	4,156,250
CRWI	mg/L as N	1	1	1
Св	mg/L as N	17.2	9.0	8.9
ODWQS C	ompliance?	No	Yes	Yes

The results for each of the three scenarios described above are provided in the following table:

As shown in the table above, the nitrate concentration in groundwater at the down-gradient site boundary (C_B) for Scenario 1 is predicted to be 17.2 mg/L, which exceeds the corresponding ODWQS of 10 mg/L. However, Scenario 2 results in a predicted C_B of 9.0 mg/L by reducing the number of lots to thirteen and using the area of those five lots to increase the total pervious area available for infiltration to approximately 50%. Alternatively, Scenario 3 achieves a predicted C_B of 8.9 mg/L by replacing the conventional septic systems with tertiary treatment systems to reduce the nitrate concentration in the effluent by 50%.

Findings and Recommendations

Based on the above results, the preferred option to achieve a nitrate concentration at the downgradient site boundary of less than 10 mg/L is to install a tertiary treatment system approved under the Ontario Building Code for each lot. To improve the overall system performance, we suggest implementing LID strategies to promote increased infiltration at the site.

This recommendation assumes that the final site plan design is similar to that shown on Figure 2 and that the design adheres to the assumptions described for Scenario 3. Should the site plan or design assumptions need to be altered in any way, MTE should be requested to review the changes and assess whether the findings and recommendations described herein remain valid.

Limitations

Services performed by MTE were conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the Environmental Engineering and Consulting profession. No other warranty or representation expressed or implied as to the accuracy of the information, conclusions or recommendations is included or intended in this report.

This letter is not intended to be exhaustive in scope or to imply a risk-free site. The findings of this report are based on conditions as they existed during the time period of the investigation.

Any use which another party makes of this report, or any reliance on, or decisions to be made based upon it, are the responsibility of such parties.

Closure

We trust that this letter provides sufficient information for your current needs. Should you require additional information or have any questions regarding the information provided, please contact this office.

GINEERIN

ANDREW

Gala,

Yours Truly,

MTE Consultants Inc.

Andrew Bingeman, C.E.T. No 810261 Manager, Groundwater Resources 519-743-6500 ext. 1309 abingeman@mte85.com John McNeil, M.Sc., P.Geo. MTAR

Senior Hydrogeologist 519-204-6510 ext. 2228 jmcneil@mte85.com

Attachments:

Figures 1 and 2 Table 1 Borehole Logs Certificates of Analysis

JDM/ALB:Imb

M:\45013\300\Reports\45013-300 20191203 FINAL LTR N Loading Assessment.docx

MTE Consultants | 45013-300 | Results of Groundwater Sampling and Nitrate Loading Assessment

CAD: P: \P\45013\300\BH FIGURES\45013-300 BH FIGURES.DWG Project: 45013-300

FIGURE 1 - LOCATION PLAN

10919 LONGWOODS ROAD PROPOSED INDUSTRIAL SUBDIVISION Engineers |Scientists |Surveyors Site <u>Client</u> 10919 LONGWOODS ROAD, MUNICIPALITY OF MIDDLESEX, ON 10919 LONGWOODS ROAD INC. Scale. (8.5x11) MTE Project No. Date Figure No. N.T.S. 1 45013-300 MARCH 27, 2019

 $\mathbf{\Phi}$

BH107–19


MW101-19

MTE MONITORING WELL

MTE BOREHOLE

- AERIAL IMAGE FROM GOOGLE EARTH PRO. - BOREHOLE ELEVATIONS SURVEYED BY MTE.

REFERENCES:

SITE PLAN Project Norme 10919 LONGWOODS ROAD PROPOSED INDUSTRIAL SUBDIVISION Site Client AD, MUNICIPALITY OF MIDDLESEX, ON Date Figure No. 1:2000 MTE Project No. Date Figure No. 1:2000 45013-300 MARCH 27, 2019 2

TABLE 1: GROUNDWATER ANALYTICAL RESULTS - O. Reg 169/03: ONTARIO DRINKING WATER QUALITY STANDARDS

			Sample Name	MW1	01-19	MW1	.02-19	MW1	03-19	MW1	04-19	MW1	05-19	MW1	.06-19
			Lab Job #	19L517579	19L526675										
L			Laboratory ID	523781	587532	523793	587576	523794	587591	523795	587600	523796	587605	523797	587607
Parameter	Unit	RDL	Sampling Date	2019-09-13	2019-10-04	2019-09-13	2019-10-04	2019-09-13	2019-10-04	2019-09-13	2019-10-04	2019-09-13	2019-10-04	2019-09-13	2019-10-04
			O. Reg. 169/03												
Nitrate as N	mg/L	0.05 or 0.25 or 0.50	10.0	<0.5	<0.5	<0.05	<0.25	<0.05	<0.05	18.7	19.7	<0.05	<0.05	<0.05	<0.05
Nitrite as N	mg/L	0.05 or 0.25 or 0.50	1.0	<0.5	<0.5	<0.05	<0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Nitrate + Nitrite) as N (Calculated)	mg/L	0.07	NR	NA	<0.07	NA	<0.07	NA	<0.07	18.7	19.7	NA	<0.07	NA	<0.07
Ammonia as N	mg/L	0.02	NR	0.75	0.90	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	0.12	<0.02	<0.02
Total Kjeldahl Nitrogen	mg/L	0.10	NR	1.78	2.49	0.56	6.10	0.45	0.53	<0.10	<0.10	0.86	0.55	0.56	0.33

NOTES:

Bold - Exceeds O.Reg 169/03 Criteria "<" - Less than the Reporting Detection Limit

RDL - Reported detection limit (varies for N in each Certificate of Analysis for this project)

NR - Not Relevant

NA - Not Applicable (not tested or calculated)

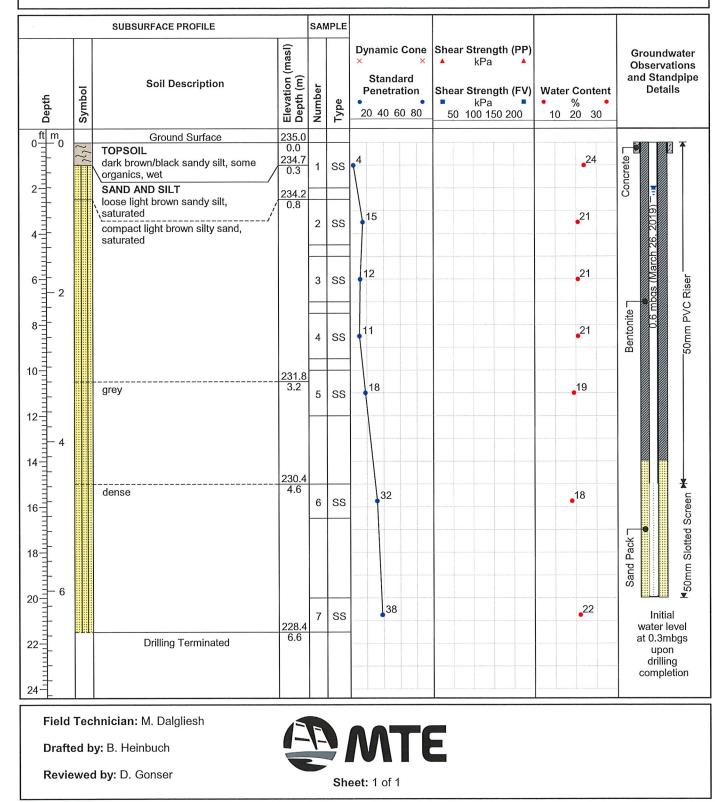
ID Number: MW101-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON


Drill Date: 3/20/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

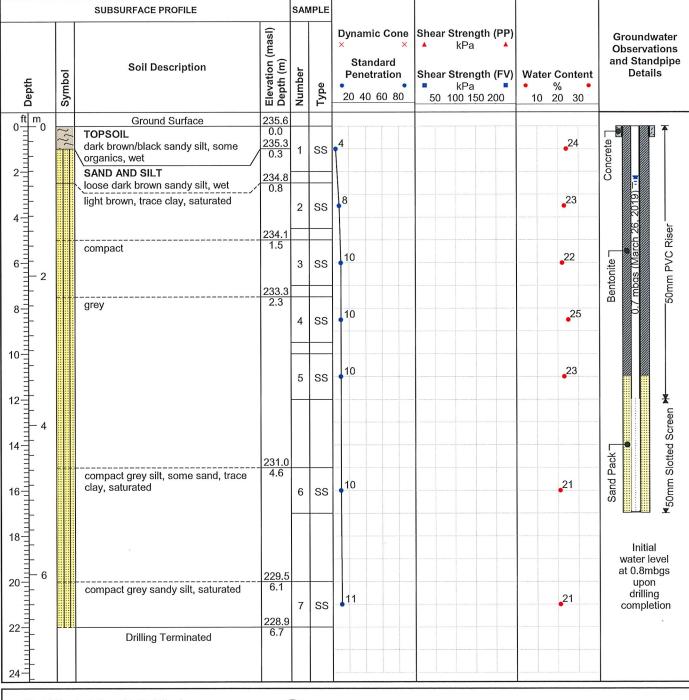
ID Number: MW102-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON


Drill Date: 3/20/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Field Technician: M. Dalgliesh

Drafted by: B. Heinbuch

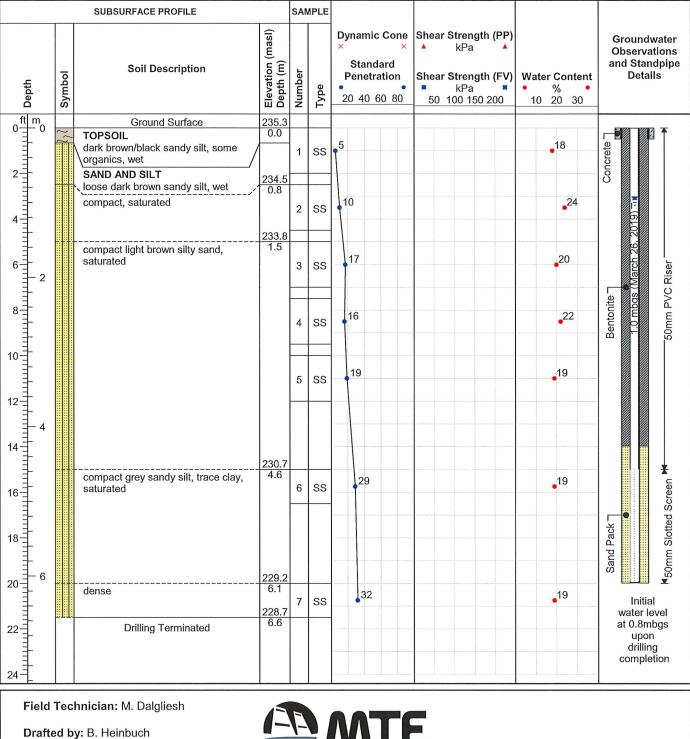
ID Number: MW103-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON


Drill Date: 3/20/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

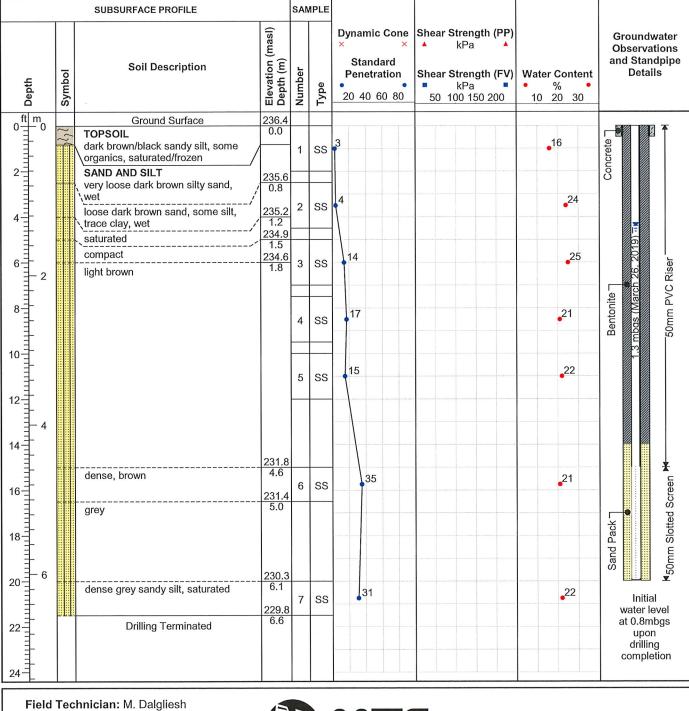
ID Number: MW104-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON


Drill Date: 3/20/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Drafted by: B. Heinbuch

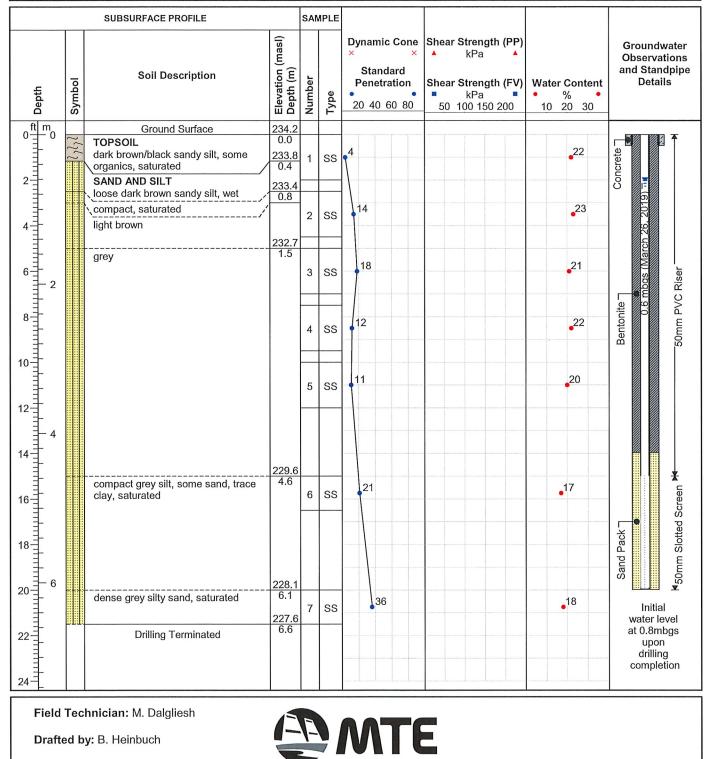
ID Number: MW105-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON


Drill Date: 3/20/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Sheet: 1 of 1

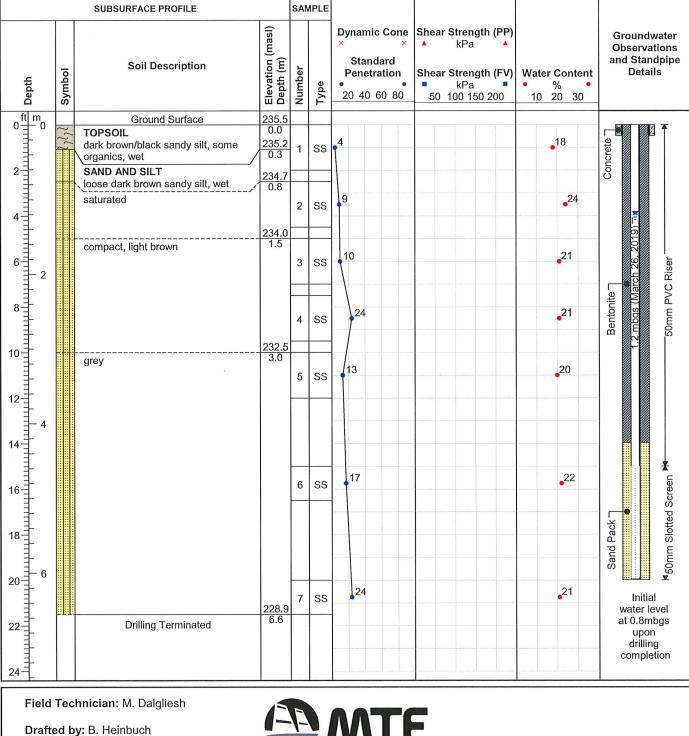
ID Number: MW106-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON


Drill Date: 3/20/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

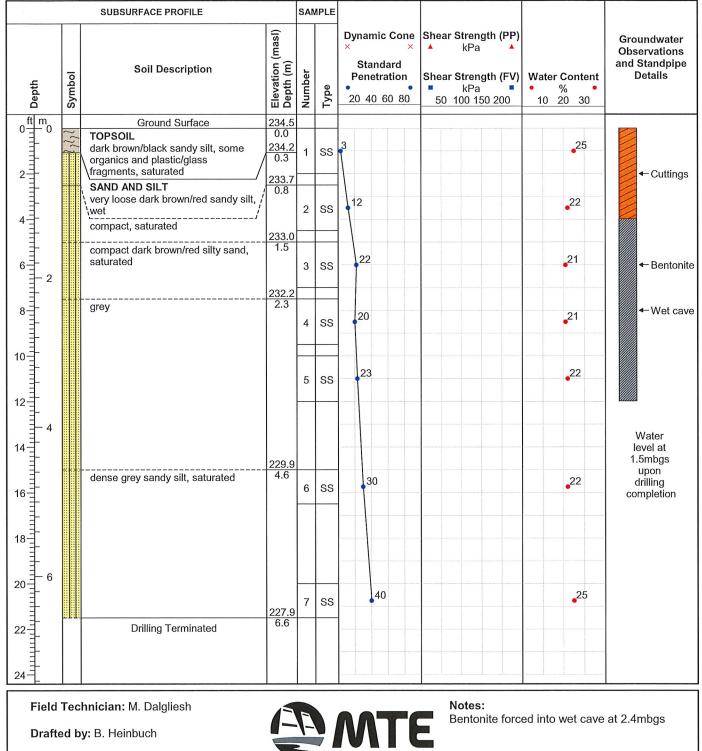
ID Number: BH107-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON


Drill Date: 3/21/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Sheet: 1 of 1

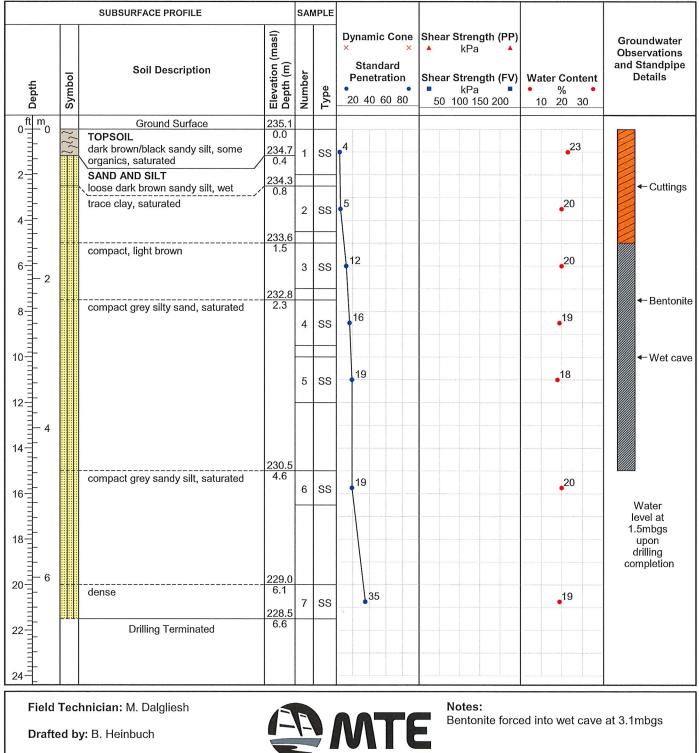
ID Number: BH108-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON


Drill Date: 3/21/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Sheet: 1 of 1

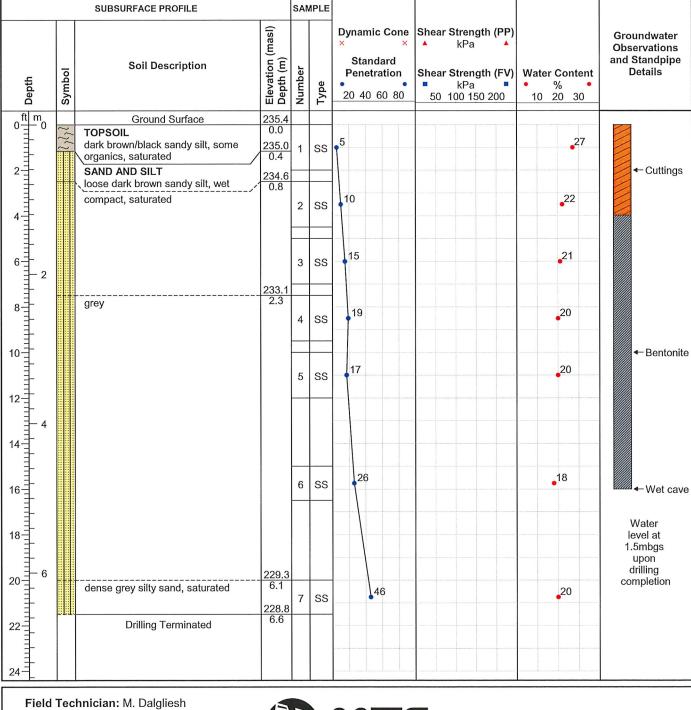
ID Number: BH109-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON


Drill Date: 3/21/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Drafted by: B. Heinbuch

CLIENT NAME: MTE CONSULTANTS Inc. 123ST GEORGE STREET LONDON, ON N6A 3A1 519-204-6510

ATTENTION TO: John McNeil

PROJECT: 45013-300

AGAT WORK ORDER: 19L517579

WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Sep 18, 2019

PAGES (INCLUDING COVER): 4

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>		

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

 Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)
 Ad

 Western Enviro-Agricultural Laboratory Association (WEALA)
 Sociation of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

Page 1 of 4

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

Laboratories

CLIENT NAME: MTE CONSULTANTS Inc.

SAMPLING SITE:Longwoods

Certificate of Analysis

AGAT WORK ORDER: 19L517579 PROJECT: 45013-300

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L42 172 TEL (905)712-5120 FAX (905)712-5122 http://www.agatlabs.com

P	5
Z	Ó
ATTENTION TC	ייאם עם ומוע א
Ξ	-
巴	101
F	<
4	0

ATTENTION TO: John McNeil SAMPLED BY:Mackenzie Costello

				Vario	us Inorga	Various Inorganics (water)					
DATE RECEIVED: 2019-09-13									DATE REPORTED: 2019-09-18	ED: 2019-09-18	
		SAMPLE DESCRIPTION:	CRIPTION:	MW101-19		MW102-19	MW103-19	MW104-19	MW105-19	MW106-19	
		SAMF	SAMPLE TYPE:	Water		Water	Water	Water	Water	Water	
		DATE S	DATE SAMPLED:	2019-09-13		2019-09-13	2019-09-13	2019-09-13	2019-09-13	2019-09-13	
Parameter	Unit	G/S	RDL	523781	RDL	523793	523794	523795	523796	523797	
Nitrate as N	mg/L		0.5	<0.5	0.05	<0.05	<0.05	18.7	<0.05	<0.05	
Nitrite as N	mg/L		0.5	<0.5	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ammonia as N	mg/L		0.02	0.75	0.02	<0.02	<0.02	<0.02	0.02	<0.02	
Total Kjeldahl Nitrogen	mg/L		0.10	1.78	0.10	0.56	0.45	<0.10	0.86	0.56	
Commentation (Constraint Constraint) (Constraint)	otootion I imit.		mologia / Chandra								

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Elevated RDL indicates the degree of sample dilution prior to the analysis in order to keep analytes within the calibration range of the instrument and to reduce matrix interference. Analysis performed at AGAT Toronto (unless marked by *) 523781

divine Basily

Quality Assurance

CLIENT NAME: MTE CONSULTANTS Inc.

PROJECT: 45013-300

SAMPLING SITE:Longwoods

AGAT WORK ORDER: 19L517579 ATTENTION TO: John McNeil SAMPLED BY:Mackenzie Costello

				Wate	er Ar	nalys	is								
RPT Date: Sep 18, 2019			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Various Inorganics (water)															
Nitrate as N	533152		0.83	0.87	4.7%	< 0.05	93%	90%	110%	107%	90%	110%	103%	85%	115%
Nitrite as N	533152		<0.25	<0.25	NA	< 0.05	NA	90%	110%	106%	90%	110%	107%	85%	115%
Ammonia as N	520229		0.18	0.17	5.7%	< 0.02	99%	90%	110%	97%	90%	110%	99%	70%	130%
Total Kjeldahl Nitrogen	530411		36.4	36.6	0.5%	< 0.10	98%	80%	120%	97%	80%	120%	94%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Page 3 of 4

Method Summary

CLIENT NAME: MTE CONSULTANTS Inc.

PROJECT: 45013-300

AGAT WORK ORDER: 19L517579 ATTENTION TO: John McNeil

SAMPLING SITE:Longwoods		SAMPLED BY:Ma	ckenzie Costello
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	SM 4500-NH3 H	LACHAT FIA
Total Kjeldahl Nitrogen	INOR-93-6048	QuikChem 10-107-06-2-I & SM 4500-Norg D	LACHAT FIA

CLIENT NAME: MTE CONSULTANTS Inc. 123ST GEORGE STREET LONDON, ON N6A 3A1 519-204-6510

ATTENTION TO: John Mcneil

PROJECT: 45013-300

AGAT WORK ORDER: 19L526675

WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Oct 10, 2019

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES			
			1

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformily with a specified requirement.

Page 1 of 5

Results relate only to the items tested. Results apply to samples as received. All reportable information as specified by ISO 17025:2017 is available from AGAT Laboratories upon request

Laboratories
C
P

CLIENT NAME: MTE CONSULTANTS Inc.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 19L526675 PROJECT: 45013-300

5835 COOPERS AVENUE MISSISSAUGA. ONTARIO CANADA. L4Z 1Y2 TEL (905)712-5120 FAX (905)712-5120 http://www.agatlabs.com

ın Mcneil	
ENTION TO: Joh	PLED BY:
ATTI	SAM

DATE RECEIVED: 2019-10-04									DATE REPORTED: 2019-10-10	D: 2019-10-10:	
		SAMPLE DESCRIPTION:	1	MW101-19		MW102-19		MW103-19	MW104-19	MW105-19	MW106-19
		SAMPI	SAMPLE TYPE:	Water		Water		Water	Water	Water	Water
		DATE S/	DATE SAMPLED:	2019-10-04 09:05		2019-10-04 12:22		2019-10-04 09:55	2019-10-04 10:35	2019-10-04 11:30	2019-10-04 11:55
Parameter	Unit	G/S	RDL	587532	RDL	587576	RDL	587591	587600	587605	587607
Nitrate as N	mg/L		0.5	<0.5	0.25	<0.25	0.05	<0.05	19.7	<0.05	<0.05
Nitrite as N	mg/L		0.5	<0.5	0.25	<0.25	0.05	<0.05	<0.05	<0.05	<0.05
(Nitrate + Nitrite) as N (Calculated)	mg/L		0.07	<0.07	0.07	<0.07	0.07	<0.07	19.7	<0.07	<0.07
Ammonia as N	mg/L		0.02	0.90	0.02	<0.02	0.02	<0.02	<0.02	0.12	<0.02
Total Kjeldahl Nitrogen	mg/L		0.10	2.49	0.50	6.10	0.10	0.53	<0.10	0.55	0.33

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard Elevated RDL indicates the degree of sample dilution prior to the analysis in order to keep analytes within the calibration range of the instrument and to reduce matrix interference. 587576

Certified By:

Quality Assurance

CLIENT NAME: MTE CONSULTANTS Inc.

PROJECT: 45013-300

SAMPLING SITE:

AGAT WORK ORDER: 19L526675 ATTENTION TO: John Mcneil SAMPLED BY:

Water Analysis

RPT Date: Oct 10, 2019			DUPLICATE			REFERENCE MATERIAL		METHOD BLANK SPIKE		MATRIX SPIKE				
Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
	Id						Lower	Upper	L	Lower	Upper		Lower	Upper
602152		<0.25	<0.25	NA	< 0.05	92%	90%	110%	104%	90%	110%	99%	85%	115%
602152		<0.25	<0.25	NA	< 0.05	NA	90%	110%	104%	90%	110%	109%	85%	115%
583935		0.90	0.89	1.1%	< 0.02	104%	90%	110%	103%	90%	110%	94%	70%	130%
587532	587532	2.49	2.48	0.4%	< 0.10	102%	80%	120%	101%	80%	120%	111%	70%	130%
	602152 602152 583935	602152 602152 583935	Batch Sample Id Dup #1 602152 <0.25	Batch Sample Id Dup #1 Dup #2 602152 <0.25	Batch Sample Id Dup #1 Dup #2 RPD 602152 <0.25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank 602152 <0.25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value 602152 <0.25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Value Acce Lin Lower 602152 <0.25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Measured Measured Value Acceptable Limits 602152 <0.25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Method Blank Acceptable Limits Lower Acceptable Upper 602152 <0.25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Method Blank Acceptable Limits Lower Acceptable Limits Acceptable Limits Acceptable Limits <td>Batch Sample Id Dup #1 Dup #2 RPD Method Blank Method Blank Acceptable Limits Acceptable Limits Acceptable Limits 602152 <0.25</td> <0.25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Method Blank Acceptable Limits Acceptable Limits Acceptable Limits 602152 <0.25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Method Blank Acceptable Limits Lower Acceptable Limits Acceptable Limits Recovery 602152 <0.25	Batch Sample Id Dup #1 Dup #2 RPD Method Blank Method Blank Acceptable Limits Lower Acceptable Limits Acceptable Limits Acceptable Limits<

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

Page 3 of 5

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Method Summary

CLIENT NAME: MTE CONSULTANTS Inc.

PROJECT: 45013-300

AGAT WORK ORDER: 19L526675 ATTENTION TO: John Mcneil

SAMPLING SITE:		SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis								
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH					
(Nitrate + Nitrite) as N (Calculated)	INOR-93-6004	SM 4110 B	CALCULATION					
Ammonia as N	INOR-93-6059	SM 4500-NH3 H	LACHAT FIA					
Total Kjeldahl Nitrogen	INOR-93-6048	QuikChem 10-107-06-2-I & SM 4500-Norg D	LACHAT FIA					

Laboratory Use Only Work Order #:9L534_675 Cooler Quantity:9L6134_675 Arrival Temperatures:3L6134_0_142	me (TAT) Required:	Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays For 'Same Day' analysis, please contact your AGAT CPM	Image: Contract of the contract	Date Time PM Page Of Of Date Time No: T Date
5835 Coopers Avenue Mississauga, Ontario L42 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com (potable water consumed by humans)	ate utta	Report Guideline on Certificate of Analysis	Z Field Filtered - Metals, Hg, CrVI Z Field Filtered - Metals, Hg, CrVI Retais Data Metals Metals Cr C C	12/20
Image: Second state in the second s	Plast enterk all applicable covers) Sewer U Table Table Table Sanita Ellowidiant One Sanita Ellowidiant One Sanita Ellowidiant One Sanita Constant Region Soil Texture (check One) Region Indicate Indicate Coarse Indicate	Is this submission for a Record of Site Condition? Tyes X No	Sample Matrix Legend B Biota Gw Ground Water Gw Ground Water o Oli P Paint S Soil S So	2 Amples Received Brighmi Name ang Signi Afred Lot Amn (2. Mr. Sample Reverved By (Pint Name and Signi Samples Received By (Pint Name and Signi
Chain of Custody Record If this is a prinking Water sample, please use Drinking Water sample, please use Dri	Company: MTE Consultants Contact: 123 St. Gronge St. London, ON Address: Phone: Fax: Fax: Fax: Fax: Fax: Fax: Fax: Fax	Project Information: Project: <u>45013 - 300</u> Site Location: <u>Long wood & Rol</u> Samoled Br: Mackenzie Costello	# PO: Prease note: If quotation number is not provided, elient will be billed full price. If quotation Information: Bill To Same: Yek No Information: Date Time sample Identification Bill To Same: Yek No Sample Identification Date Time Sample Identification Date I Sample Identification Date Time Sample Identification Date I I I I I I I I I I I I I I I I I I I I I	samples Relampliched Experies Varge and Signs, VaCEDATIO (DESCR) (DOV)