

July 3, 2020 MTE File No.: 45013-300

Mr. Guy Riopeele 10919 Longwoods Road Inc. 10919 Longwoods Road Middlesex Centre, Ontario

Dear Mr. Riopeele:

RE: Results of In-situ Infiltration Testing, Proposed Industrial Subdivision, 10919 Longwoods Road, Middlesex Centre, ON

This letter presents the results of in-situ infiltration testing carried out to support the design of atsource stormwater infiltration facilities for a proposed industrial subdivision to be located at 10919 Longwoods Road in the Municipality of Middlesex Centre, Ontario (herein referred to as the "Site"). The approximate location of the Site is shown on **Figure 1**.

Field Methodology

On April 15 and 16, 2020 in-situ infiltration testing of the native surficial soils was carried out using a constant head well permeameter (Guelph Permeameter Model 2800K1) supplied by Hoskins Scientific. Test methods followed the manufacturer's operating instructions¹. Infiltration tests were carried out at three locations identified as corresponding to the proposed footprint of the atsource stormwater infiltration facilities. The approximate test locations are shown on **Figure 2**.

At each test location, two infiltration tests were performed, each in a unique auger hole that was manually advanced to a depth of 0.5 meters below the existing ground surface. It is our understanding that the grade will be raised for this development and that the tested elevations correspond to the approximate base of the proposed infiltration facilities.

Each of the auger holes extended through the topsoil, which was noted to range in thickness from 0.3 to 0.4 meters, into the underlying native sand and silt deposits. A description of the shallow soils encountered in the auger holes at the test depth is provided in **Table 1**.

Based on a review of nearby borehole logs prepared as part of the geotechnical investigation², the stratigraphy is relatively consistent beneath the tested depth. As a result, additional tests were not completed to assess infiltration of the soils underlying the infiltration facility. Copies of the borehole logs are attached.

¹ Soilmoisture Equipment Corp. December 2012. *Operating Instructions, Guelph Permeameter, Model 2800.*

² MTE Consultants, March 2019. *Geotechnical Investigation, 10919 Longwoods Road, Proposed Industrial Subdivision.* MTE File No.: 45013-300.

Test ID	Location	UTMs (Zone 17T)	Ground Elevation (m AMSL) ²	Test Elevation (m AMSL) ²	Soil Description for Test Elevation
IT-1	Lot #7	467573m E, 4750768m N	235.65	235.15	Sand, some silt to sandy silt with trace clay
IT-2	SWM Block	467536m E, 4750857m N	235.37	234.87	Sand, some silt to sandy silt
IT-3	Lot #12	467426m E, 4750717m N	236.29	235.79	Silty sand to silt, some sand with trace to some clay

Table 1:	Summary	of Infiltration	Test Locations

NOTES:

1. All values approximate.

2. "m AMSL" refers to meters above mean sea level.

Analysis and Results

Field saturated hydraulic conductivity (K_{fs}) was estimated following the single-head method described by Reynolds and Elrick (1986)³ and a calculation spreadsheet available online from Soilmoisture Equipment Corp.⁴ Copies of the calculation sheets for each of the six tests are attached.

The results of the infiltration tests on native soils are summarized in **Table 2**. The recommended design infiltration rate is based on guidance provided by the Toronto and Region Conservation Authority (TRCA) and Credit Valley Conservation $(CVC)^5$ and the approximate relationship between hydraulic conductivity and infiltration rate. It is noted that hydraulic conductivity and infiltration rate are different concepts and unit conversion does not apply. A factor of safety of 3 was applied to the recommended design infiltration rates.

Test ID	Location	K _{fs} (m/sec)	Geometric Mean, K _{fs} (m/sec)	Recommended Design Infiltration Rate (mm/hr)
	Lot #7	9.5E-06		20
11-1 LOU#7		1.1E-05	1.00-00	29
IT-2		1.6E-06	1.7E-06	18

Table 2: Results of Infiltration Testing

³ Reynolds, W.D. and Elrick, D.E. 1986. A Method for Simultaneous In-Situ Measurement in the Vadose Zone of Field Saturated Hydraulic Conductivity, Sorptivity and the Conductivity-Pressure Head Relationship. Ground Water Monitoring Review Vol 6, No. 4.

⁴ https://www.soilmoisture.com/Calculators/Guelph-Permeameter-Ksat-Calculator-ver-3.xls

⁵ TRCA and CVC. 2011. Low Impact Development Stormwater Management Planning Design Guide. Appendix C, Version 1.0.

MTE Consultants | 45013-300 | Results of In-situ Infiltration Testing

Test ID	Location	K _{fs} (m/sec)	Geometric Mean, K _{fs} (m/sec)	Recommended Design Infiltration Rate (mm/hr)	
	SWM Block	1.9E-06			
17.2	IT 2 Lot #12 5.3E-08			6	
11-5		1.5E-08	2.92-00	0	

NOTES:

1. All values are approximate.

Recommendations

The following recommendations are provided:

- If the footprint or proposed depth of the at-source infiltration facilities is altered from the tested locations, additional in-situ infiltration testing should be carried out at new locations and/or depths;
- A groundwater monitoring program should be implemented to establish the seasonal high groundwater elevation and confirm that there is sufficient separation from the base of the infiltration facility to the seasonal high groundwater table; and
- Following determination of the seasonal high groundwater level, if there is less than 2 m of separation between the proposed based of the infiltration facility and the seasonal high groundwater level, a groundwater mounding analysis should be completed as part of the detailed design.

Limitations

This letter was prepared for 10919 Longwoods Road Inc. Any use which a third party makes of this document, or any reliance on or decisions to be made based on it, are the sole responsibility of such third parties.

Our findings are based on limited data and information collected during the identified field testing and are based solely on-site conditions encountered at the time of investigation. The site conditions were inferred based on observations and tests at a limited number of locations and the conditions may vary between and beyond these locations.

Services performed by MTE were conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the Environmental Engineering and Consulting profession. No other warranty is expressed or implied.

Closure

We trust that this letter provides sufficient information for your current needs. Should you require additional information or have any questions regarding the information provided, please contact the undersigned.

Yours Truly,

MTE Consultants Inc.

Attachments:

Figures 1 and 2 Borehole Logs K_{fs} Calculations

MBC/JDM/jdm

M:\45013\300\Deliverables\Infiltration Testing\Final\45013-300L02 20200703 Infiltration Results.docx

MTE Consultants | 45013-300 | Results of In-situ Infiltration Testing

Figures

CAD: P: \P\45013\300\BH FIGURES\45013-300 BH FIGURES.DWG Project: 45013-300

FIGURE 1 - LOCATION PLAN

		REFERENCES:		
	BH107–19	- AERIAL IMAGE FROM GOOGLE EARTH PRO. - BOREHOLE ELEVATIONS SURVEYED BY MTE.		
	MTE BOREHOLE		Engineers, Scientists, Surveyors	10919 LONGW
•	MW101-19	IT-1	10919 LONGWOOD)S ROAD, MUNICIPALITY
$\mathbf{\Psi}$	MTE MONITORING WELL	MTE INFILTRATION TEST LOCATION		<u>Scale (11x17)</u> 1:2000

SITE PLAN				
Project Name IGWOODS ROAD PROPOSED INDUSTRIAL SUBDIVISION				
<u>Site</u> LITY OF MIDDLESEX, ON	<u>دان</u> 10919 LONGWO	ent ODS ROAD INC.		
MTE Project No. 45013-300	<u>Date</u> MARCH 27, 2019	Figure No. 2		

Borehole Logs

The following are abbreviations and symbols commonly used on borehole logs, figures and reports.

Sample Types

AS	Auger Sample
CS	Chunk Sample
BS	Bulk Sample
GS	Grab Sample
WS	Wash Sample
SS	Split Spoon
RC	Rock Core
SC	Soil Core
TW	Thinwall, Open
ТР	Thinwall, Piston

Soil Tests

PP	Pocket Penetrometer
FV	Field Vane
SPT	Standard Penetration Test
CPT	Cone Penetration Test
WC	Water Content
WL	Water Level

Penetration Resistance

Standard Penetration Test, N (ASTM D1586)	The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) open spilt spoon sampler for a distance of 300 mm (12 in.).
Dynamic Cone Penetration Resistance	The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive an uncased 50 mm (2 in.) diameter, 600 cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

WH

Soil Description

Cohesive Soils	Undrained Shear Strength (Cu)		
Consistency	kPa	psf	
Very Soft	0 to 12	0 to 250	
Soft	12 to 25	250 to 500	
Firm	25 to 50	500 to 1,000	
Stiff	50 to 100	1,000 to 2,000	
Very Stiff	100 to 200	2,000 to 4,000	
Hard	Above 200	Above 4,000	

WR	Sampler advanced by static weight of drilling rods
PH	Sampler advanced by hydraulic force
РМ	Sampler advanced by manual force
DTPL	Drier than Plastic Limit
APL	About Plastic Limit
WTPL	Wetter than Plastic Limit
mbgs	Metres below Ground Surface

weight of hammer

Sampler advanced by static

Cohesionless Soils	
Relative Density	SPT N Value
Very Loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	Above 50

ID Number: MW101-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON

Drill Date: 3/20/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

ID Number: MW102-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON

Drill Date: 3/20/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

SUBSURFACE PROFILE			SAN	IPLE					
Depth	Symbol	Soil Description	Elevation (masl) Depth (m)	Number	Type	Dynamic Cone × × Standard Penetration 20 40 60 80	Shear Strength (PP)	Water Content • % • 10 20 30	Groundwater Observations and Standpipe Details
ft m		Ground Surface	235.6						
	12/2	TOPSOIL dark brown/black sandy silt, some organics, wet	0.0 <u>235.3</u> 0.3	1	SS	4		24	
		SAND AND SILT Loose dark brown sandy silt, wet light brown, trace clay, saturated	<u>234.8</u> 0.8	2	99	8		_23	
4			234.1	2					ch 26, 2(
		compact	1.5	3	SS	10		_ 22	tonite
			233.3						Sent
8		grey	2.3	4	ss	10		2 5	
10 10 11 12				5	SS	10		_23	×
12 4 4 4 			224.0						ck • • • • • • • • • • • • •
16-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		compact grey silt, some sand, trace clay, saturated	4.6	6	SS	10		21	Sand Pa
18									Initial water level at 0.8mbgs
		compact grey sandy silt, saturated	229.5 6.1 228.9	7	SS	11		21	upon drilling completion
22-1		Drilling Terminated	6.7						
		1	L			1		1	1

Field Technician: M. Dalgliesh

Drafted by: B. Heinbuch

ID Number: MW103-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON

Drill Date: 3/20/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Sheet: 1 of 1

ID Number: MW104-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON

Drill Date: 3/20/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Drafted by: B. Heinbuch

ID Number: MW105-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON

Drill Date: 3/20/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Sheet: 1 of 1

ID Number: MW106-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON

Drill Date: 3/20/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Sheet: 1 of 1

ID Number: BH107-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON

Drill Date: 3/21/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Sheet: 1 of 1

ID Number: BH108-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON

Drill Date: 3/21/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Sheet: 1 of 1

ID Number: BH109-19

Project: 10919 Longwoods Road Proposed Industrial Subdivision

Project No: 45013-300

Client: 10919 Longwoods Road Inc.

Site Location: 10919 Longwoods Road, Middlesex Centre, ON

Drill Date: 3/21/2019

Drilling Contractor: London Soil Test Ltd.

Drill Rig: D50T Track

Drill Method: Hollow Stem Auger

Protective Cover: Monument Casing

Drafted by: B. Heinbuch

K_{fs} Calculations

Calculation formulas related to shape factor (*C*). Where *H*_i is the first water head height (cm), *H*₂ is the second water head height (cm), *H*₂ is the first head of water in reservoir (cm), *K*_f is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length factor which is decided according to the soil lexture-structure category. For one-head method, only *C*₁ needs to be calculated while for two-head method, *C*₁ and *C*₂ are calculated (2ang et al., 1998).

Soll Texture-Structure Category	a^(cm *)	Snape r actor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{2}/a}{2.081 + 0.121 \left(\frac{H_{2}}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured, may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/a}{1.992 + 0.091(^{H_1}/a)}\right)^{0.683} \\ C_2 &= \left(\frac{H_2/a}{1.992 + 0.091(^{H_2}/a)}\right)^{0.683} \end{split}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$\begin{split} C_1 &= \left(\frac{H_1/_{\alpha}}{2.074 + 0.093(^{H_1}/_{\alpha})}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/_{\alpha}}{2.074 + 0.093(^{H_2}/_{\alpha})}\right)^{0.754} \end{split}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} C_1 &= \left(\frac{H_1/\alpha}{2.074 + 0.093(^{H_1}/\alpha)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/\alpha}{2.074 + 0.093(^{H_2}/\alpha)}\right)^{0.754} \end{split}$

ond head of water establis	sneu in oorenole (cm) and	i c is snape lactor (from 12ble 2).
One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$ \begin{aligned} G_1 &= \frac{H_2C_1}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ G_2 &= \frac{H_1C_2}{\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \\ K_{fx} &= G_2Q_2 - G_1Q_1 \\ G_3 &= \frac{(2H_2^2 + a^2C_2)C_1}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))} \end{aligned} $
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$\begin{split} G_4 &= \frac{(2H_1^2 + a^2C_1)C_2}{2\pi \big(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1)\big)} \\ \Phi_m &= G_3Q_1 - G_4Q_2 \end{split}$

Calculation formulas related to shape factor (C). Where H_1 is the first water head height (cm), H_2 is the second water head height (cm), a is borehole radius (cm) and a^* is microscopic capillary length factor which is decided according to the root letture-structure category. For one-head method, only C_1 reads to be calculated while for two-head method, C_2 and C_2 are calculated Ziang et al. (1986).

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{fg} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm), H_2 is the second head of water established in borehole cm) and C is Shane factor (from Table 2).

Son Texture-Structure Category	a^(cm *)	Snape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{2/a}}{2.081 + 0.121 \binom{H_{2/a}}{2}}\right)^{0.672}$
Soils which are both fins textured (clayey or silty) and unstructured, may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/a}{1.992 + 0.091(H_1/a)}\right)^{0.683} \\ C_2 &= \left(\frac{H_2/a}{1.992 + 0.091(H_2/a)}\right)^{0.663} \end{split}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093(H_1/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093(H_2/a)}\right)^{0.754} \end{split}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093(H_{1/a})}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093(H_{2/a})}\right)^{0.724}$

One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}C_{1}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi(2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$
Two Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$ $Q_2 = \overline{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\phi_m = G_3Q_1 - G_4Q_2$

Calculation formulas related to shape factor (*C*). Where *H*_i is the first water head height (cm), *H*₂ is the second water head height (cm), *H*₂ is the first head of water in reservoir (cm), *K*_f is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length factor which is decided according to the soil lexture-structure category. For one-head method, only *C*₁ needs to be calculated while for two-head method, *C*₁ and *C*₂ are calculated (2ang et al., 1998).

Soil Texture-Structure Category	$\alpha^{*}(\text{cm}^{-1})$	Shape Factor
Compacted, Structure-Jess, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{2}/a}{2.081 + 0.121 \left(\frac{H_{2}}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured, may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/_{\alpha}}{1.992 + 0.091(^{H_1}/_{\alpha})}\right)^{0.683} \\ C_2 &= \left(\frac{H_2/_{\alpha}}{1.992 + 0.091(^{H_2}/_{\alpha})}\right)^{0.683} \end{split}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093(^{H_{1}}/a)}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093(^{H_{2}}/a)}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} C_1 &= \left(\frac{H_1/\alpha}{2.074 + 0.093(^{H_1}/\alpha)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/\alpha}{2.074 + 0.093(^{H_2}/\alpha)}\right)^{0.754} \end{split}$

ond nead of water establis	siled in obtenole (cin) and	c is shape factor (from 12ble 2).
One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}L_{1}}{\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fz} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi (2H_{1}H_{2}(H_{2} - H_{2}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\Phi_m = G_3Q_1 - G_4Q_2$

Calculation formulas related to shape factor (*C*). Where *H*_i is the first water head height (cm), *H*₂ is the second water head height (cm), *H*₂ is the first head of water in reservoir (cm), *K*_f is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length factor which is decided according to the soil lexture-structure category. For one-head method, only *C*₁ needs to be calculated while for two-head method, *C*₁ and *C*₂ are calculated (2ang et al., 1998).

Soil Texture-Structure Category	$\alpha^{*}(\text{cm}^{-1})$	Shape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{2/a}}{2.081 + 0.121 \left(\frac{H_{2/a}}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured, may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/a}{1.992 + 0.091 \left(\frac{H_1}{a}\right)}\right)^{0.683} \\ C_2 &= \left(\frac{H_2/a}{1.992 + 0.091 \left(\frac{H_2}{a}\right)}\right)^{0.683} \end{split}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093 \left(\frac{H_1}{a}\right)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093 \left(\frac{H_2}{a}\right)}\right)^{0.754} \end{split}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} C_1 &= \left(\frac{H_1/a}{2.074 + 0.093(^{H_1}/a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/a}{2.074 + 0.093(^{H_2}/a)}\right)^{0.754} \end{split}$

cond head of water establis	shed in borehole (cm) and	Cis Shape factor (from Table 2).
One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fz} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$\begin{aligned} G_1 &= \frac{H_2 C_1}{\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1))} \\ G_2 &= \frac{H_1 C_2}{\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1))} \\ K_{fs} &= G_2 Q_2 - G_1 Q_1 \\ G_3 &= \frac{(2H_2^2 + a^2 C_2) C_1}{2\pi (2H_1 H_2 (H_2 - H_1) + a^2 (H_1 C_2 - H_2 C_1))} \end{aligned}$
Two Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$ $Q_2 = \overline{R}_2 \times 2.16$	$\begin{split} G_4 &= \frac{(2H_1^2 + a^2C_1)C_2}{2\pi \big(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1)\big)} \\ \Phi_m &= G_3Q_1 - G_4Q_2 \end{split}$

Calculation formulas related to shape factor (C). Where H_1 is the first water head height (cm), H_2 is the second water head height (cm), H_2 is the second water head height (cm), H_2 is borehole radius (cm) and α^* is microscopic capillary length factor which is decided according to the soil exerts-structure category. For one-head method, only C_1 meds to be calculated while for two-head method, C_1 and C_2 are calculated (Zang et al., 1998).

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{fg} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm) and G is Share factor (from Table 2).

Son Texture-Structure Category	a-(cm-)	Snape Factor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{2}/a}{2.081 + 0.121 \left(\frac{H_{2}}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured, may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/a}{1.992 + 0.091(^{H_1}/a)}\right)^{0.683} \\ C_2 &= \left(\frac{H_2/a}{1.992 + 0.091(^{H_2}/a)}\right)^{0.683} \end{split}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093(^{H_{1}}/a)}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093(^{H_{2}}/a)}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} C_1 &= \left(\frac{H_1/_a}{2.074 + 0.093(H_1/_a)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/_a}{2.074 + 0.093(H_2/_a)}\right)^{0.754} \end{split}$

cond head of water establis	siled in obtenoie (ciii) and	c is shape factor (from 12ble 2).
One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^+}\right)}$
One Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}c_{1}}{\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi (2H_{1}H_{2}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fg} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi (2H_{1}H_{1}(H_{2} - H_{1}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$
Two Head, Inner Reservoir	$Q_1 = \bar{R}_1 \times 2.16$ $Q_2 = \bar{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi (2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\phi_m = G_3Q_1 - G_4Q_2$

Calculation formulas related to shape factor (C). Where H_1 is the first water head height (cm), H_2 is the second water head height (cm), H_2 is the second water head height (cm), H_2 is borehole radius (cm) and α^* is microscopic capillary length factor which is decided according to the soil exerts-structure category. For one-head method, only C_1 meds to be calculated while for two-head method, C_1 and C_2 are calculated (Zang et al., 1998).

Calculation formulas related to one-head and two-head methods. Where R is steady-state rate of fall of water in reservoir (cm/s), K_{fg} is Soil saturated hydraulic conductivity (cm/s), Φ_m is Soil matric flux potential (cm²/s), a^* is Macroscopic capillary length parameter (from Table 2), a is Borehole radius (cm), H_1 is the first head of water established in borehole (cm) and G is Share factor (from Table 2).

Son Texture-Structure Category	a-(cm-)	Snape r actor
Compacted, Structure-less, clayey or silty materials such as landfill caps and liners, lacustrine or marine sediments, etc.	0.01	$C_{1} = \left(\frac{H_{2}/a}{2.081 + 0.121 \left(\frac{H_{2}}{a}\right)}\right)^{0.672}$
Soils which are both fine textured (clayey or silty) and unstructured, may also include some fine sands.	0.04	$\begin{split} C_1 &= \left(\frac{H_1/a}{1.992 + 0.091(H_1/a)}\right)^{0.683} \\ C_2 &= \left(\frac{H_2/a}{1.992 + 0.091(H_2/a)}\right)^{0.683} \end{split}$
Most structured soils from clays through loams; also includes unstructured medium and fine sands. The category most frequently applicable for agricultural soils.	0.12	$C_{1} = \left(\frac{H_{1/a}}{2.074 + 0.093(H_{1/a})}\right)^{0.754}$ $C_{2} = \left(\frac{H_{2/a}}{2.074 + 0.093(H_{2/a})}\right)^{0.754}$
Coarse and gravely sands; may also include some highly structured soils with large and/or numerous cracks, macro pores, etc.	0.36	$\begin{split} C_1 &= \left(\frac{H_1/_a}{2.074 + 0.093 \left(^{H_1}/_a\right)}\right)^{0.754} \\ C_2 &= \left(\frac{H_2/_a}{2.074 + 0.093 \left(^{H_2}/_a\right)}\right)^{0.754} \end{split}$

cond head of water established in borenoie (cm) and Cis Snape factor (from 1able 2).		
One Head, Combined Reservoir	$Q_1 = \bar{R}_1 \times 35.22$	$K_{fs} = \frac{C_1 \times Q_1}{2\pi H_1^2 + \pi a^2 C_1 + 2\pi \left(\frac{H_1}{a^*}\right)}$
One Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$	$\Phi_m = \frac{C_1 \times Q_1}{(2\pi H_1^2 + \pi a^2 C_1)a^* + 2\pi H_1}$
Two Head, Combined Reservoir	$Q_1 = \overline{R}_1 \times 35.22$ $Q_2 = \overline{R}_2 \times 35.22$	$G_{1} = \frac{H_{2}C_{1}}{\pi(2H_{1}H_{2}(H_{2} - H_{3}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $G_{2} = \frac{H_{1}C_{2}}{\pi(2H_{1}H_{2}(H_{2} - H_{3}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$ $K_{fs} = G_{2}Q_{2} - G_{1}Q_{1}$ $G_{3} = \frac{(2H_{2}^{2} + a^{2}C_{2})C_{1}}{2\pi(2H_{1}H_{2}(H_{2} - H_{3}) + a^{2}(H_{1}C_{2} - H_{2}C_{1}))}$
Two Head, Inner Reservoir	$Q_1 = \overline{R}_1 \times 2.16$ $Q_2 = \overline{R}_2 \times 2.16$	$G_4 = \frac{(2H_1^2 + a^2C_1)C_2}{2\pi(2H_1H_2(H_2 - H_1) + a^2(H_1C_2 - H_2C_1))}$ $\phi_m = G_3Q_1 - G_4Q_2$